Yıl: 2020 Cilt: 9 Sayı: 2 Sayfa Aralığı: 662 - 670 Metin Dili: Türkçe İndeks Tarihi: 19-11-2020

Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları

Öz:
Farklı aktif karbon konsantrasyonları (%5, %10 ve %20) kullanılarak aktif karbon destekli CdS fotokatalizörlerhidrotermal tekniği kullanılarak sentezlenmiştir. Sentezlenen %5, %10 ve %20 aktif karbon destekli CdSfotokatalizörler sırasıyla CdS_1, CdS_2 ve CdS_3 şeklinde isimlendirilmiştir. Fotokatalitik deneylerin birinciaşamasında metilen mavisinin fotokatalitik bozundurulmasında en iyi fotokatalitik aktiviteye sahip olanfotokatalizör belirlendi. Daha sonra bu fotokatalizör varlığında, katalizör miktarı ve boya konsantrasyonu gibifarklı parametrelerin metilen mavisinin fotokatalitik bozundurulmasını nasıl etkilediği incelenmiştir. Çalışmanınson kısmından en iyi fotokatalitik aktiviteye sahip olan fotokatalizörün yapısal, morfolojik ve elementselözellikleri sırasıyla x-ışını difraksiyonu (XRD), taramalı elektron mikroskobu (SEM) ve enerji dağıtıcı x-ışını(EDX) cihazları ile karakterize edilmiştir.
Anahtar Kelime:

Photocatalytic Applications of Effective Activated Carbon Supported Cds Photocatalysts

Öz:
Activated carbon supported CdS photocatalysts with different activated carbon concentrations (5%, 10% and 20%) were synthesized using hydrothermal technique. The synthesized activated carbon (5%, 10% and 20% ) supported CdS photocatalysts were named as CdS_1, CdS_2 and CdS_3, respectively. In the first step of photocatalytic experiments, the photocatalyst having the best photocatalytic activity was determined in the photocatalytic degradation of methylene blue. Then, in the presence of this photocatalyst, it was investigated how different parameters such as catalyst amount and dye concentration affect the photocatalytic degradation of methylene blue. In the last part of the study, the structural, morphological and elemental properties of the photocatalyst having the best photocatalytic activity were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersing x-ray (EDX) devices, respectively.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Baytar O., Sahin O., Kılıçvuran H., Horoz S. 2018 Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics, 29(6): 4564-4568.
  • [2] Anis P., Eren H. 2002. Comparison of Alkaline Scouring of Cotton vs. Alkaline Pectinase Preparation. AATCC Review, 12 (2): 22-26
  • [3] Horoz S. Baytar O., Şahin Ö., Kılıçvuran H. 2018. Photocatalytic degradation of methylene blue with Co alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics, 29 (2): 1004-1010.
  • [4] Das S., Mahalingam H. 2019. Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. Journal of Environmental Chemical Engineering, 7 (5): 103289.
  • [5] Hussein A.A., Alzuhairi M., Aljanabi N.H. 2018. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. AIP Conference Proceedings, 1: 030081.
  • [6] Salami J., Crews C.M. 2017. Waste disposal-An attractive strategy for cancer therapy. Science, 355 (6330): 1163.
  • [7] Reddy K.R., Karthik K.V., Benaka Prasad S.B., Soni S.K. Jeong H.M., Raghu A.V. 2016. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron, 120: 169-174.
  • [8] Taghavi Fardood S., Ramazani A., Moradi S., Asiabi A.A. 2017. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science: Materials in Electronics, 28 (18): 13596-13601.
  • [9] Abbasi S., Hasanpour M. 2017. The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 28 (2): 1307-1314.
  • [10] Horoz S., Sahin O. 2017. Synthesis, characterizations and photovoltaic properties of Cr-doped CdS QDs. Journal of Materials Science: Materials in Electronics, 28 (23): 17784-17790.
  • [11] Park H., Choi W., Hoffmann M.R. 2008. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. Journal of Materials Chemistry, 18 (20): 2379-2385.
  • [12] Jia X., Tahir M., Pan L., Huang Z.F., Zhang X., Wang L., Zou J.J. 2016. Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 198: 154-161.
  • [13] Neelgund G.M., Oki A. 2011. Photocatalytic activity of CdS and Ag(2)S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Applied catalysis. B, Environmental, 110: 99-107.
  • [14] Li Q., Guo B.,Yu J., Ran J., Zhang B., Yan H., Gong J.R. 2011. Highly Efficient Visible-LightDriven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133 (28): 10878-10884.
  • [15] Cai Q., Hu Z., Zhang Q., Li B., Shen Z. 2017. Fullerene (C60)/CdS nanocomposite with enhanced photocatalytic activity and stability. Applied Surface Science, 403: 151-158.
  • [16] Wang Q., Lian J., Ma Q., Zhang S., He J., Zhong J., Li J., Huang H., Su B. 2017. Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catalysis Today, 281: 662-668.
  • [17] Liu S.X., Chen X.Y., Chen X. 2007. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials, 143 (1): 257-263.
  • [18] Wang X., Liu Y., Hu Z., Chen Y., Liu W., Zhao G. 2009. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. Journal of Hazardous Materials, 169 (1): 1061-1067.
  • [19] Laohhasurayotin K., Pookboonmee S. 2013. Multifunctional properties of Ag/TiO2/bamboo charcoal composites: Preparation and examination through several characterization methods. Applied Surface Science, 282: 236-244.
  • [20] Huang H.-B., Wang Y., Cai F.Y., Jiao W.B., Zhang N., Liu C., Cao H.L., Lü J. 2017. Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Frontiers in Chemistry, 5 (123): 1-10.
  • [21] Guo J., Guo M., Jia D., Song X., Tong F. 2016. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property. Chemical Physics Letters, 659: 66-69.
  • [22] Hu Y., Liu Y., Qian H., Li Z., Chen J. 2010. Coating Colloidal Carbon Spheres with CdS Nanoparticles: Microwave-Assisted Synthesis and Enhanced Photocatalytic Activity. Langmuir, 26 (23): 18570-18575.
  • [23] Balushi B., Marzouqi F.A., Wahaibi B., Kuvarega A.T., Kindiy S., Kim Y., Selvaraj R. 2018. Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Applied Surface Science, 457 (1): 559-565.
  • [24] Tian Z., Yu N., Cheng Y., Wang Z., Chen Z., Zhang L. 2017. Hydrothermal synthesis of graphene/TiO2/CdS nanocomposites as efficient visible-light-driven photocatalysts. Materials Letters, 194: 172-175.
  • [25] Zou S., Fu Z., Xiang C., Wu W., Tang S., Liu Y., Yin D. 2015. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chinese Journal of Catalysis, 36 (7): 1077-1085.
APA İZGİ M, ZÖRER C, BAYTAR O, HOROZ S, ŞAHİN Ö (2020). Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. , 662 - 670.
Chicago İZGİ Mehmet Sait,ZÖRER Cihan,BAYTAR Orhan,HOROZ Sabit,ŞAHİN Ömer Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. (2020): 662 - 670.
MLA İZGİ Mehmet Sait,ZÖRER Cihan,BAYTAR Orhan,HOROZ Sabit,ŞAHİN Ömer Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. , 2020, ss.662 - 670.
AMA İZGİ M,ZÖRER C,BAYTAR O,HOROZ S,ŞAHİN Ö Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. . 2020; 662 - 670.
Vancouver İZGİ M,ZÖRER C,BAYTAR O,HOROZ S,ŞAHİN Ö Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. . 2020; 662 - 670.
IEEE İZGİ M,ZÖRER C,BAYTAR O,HOROZ S,ŞAHİN Ö "Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları." , ss.662 - 670, 2020.
ISNAD İZGİ, Mehmet Sait vd. "Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları". (2020), 662-670.
APA İZGİ M, ZÖRER C, BAYTAR O, HOROZ S, ŞAHİN Ö (2020). Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(2), 662 - 670.
Chicago İZGİ Mehmet Sait,ZÖRER Cihan,BAYTAR Orhan,HOROZ Sabit,ŞAHİN Ömer Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9, no.2 (2020): 662 - 670.
MLA İZGİ Mehmet Sait,ZÖRER Cihan,BAYTAR Orhan,HOROZ Sabit,ŞAHİN Ömer Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.9, no.2, 2020, ss.662 - 670.
AMA İZGİ M,ZÖRER C,BAYTAR O,HOROZ S,ŞAHİN Ö Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(2): 662 - 670.
Vancouver İZGİ M,ZÖRER C,BAYTAR O,HOROZ S,ŞAHİN Ö Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(2): 662 - 670.
IEEE İZGİ M,ZÖRER C,BAYTAR O,HOROZ S,ŞAHİN Ö "Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9, ss.662 - 670, 2020.
ISNAD İZGİ, Mehmet Sait vd. "Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9/2 (2020), 662-670.