Yıl: 2020 Cilt: 8 Sayı: 5 Sayfa Aralığı: 1018 - 1026 Metin Dili: Türkçe DOI: 10.24925/turjaf.v8i5.1018-1026.2978 İndeks Tarihi: 08-11-2020

3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi

Öz:
3 boyutlu (3D) yazıcılar günümüzde akademik ve endüstriyel çevrelerce ilgi gören konuların başındagelmektedir. Hatasız ürün eldesi, kişiye özel beslenmeye hızlı uyum gösterebilmesi ve sürdürülebilirözellikleri nedeniyle dikkat çekici olan 3D yazıcılar, sağlıklı ve besleyici ürün potansiyeliyle de ilgigören bir konu haline gelmiştir. Bu derlemede et ürünleri ve beslenme ilişkisi ile kişiye özelbeslenmenin 3D yazıcılar ile oluşturulabilecek potansiyel bağlantısına kısaca değinilmiş; daha sonra3D yazıcıların çalışma prensibi ve et ürünleri üretimine uygunluğu hakkında bilgi verilmiştir. Etproses atıklarının değerlendirilmesi, avantaj ve kısıtlar, yazdırılabilirlik kavramı ve bu alandayapılan çalışmalara detaylıca değinilmiştir.
Anahtar Kelime:

Processed Meat Production in 3 Dimensional (3D) Printing Technology

Öz:
Both industrial and academic fields, 3-dimensional (3D) printing of food materials is one of the most interesting subjects. Taking attention with its errorless product handling, easy adaptation for personalized nutrition and sustainable properties, 3D printing of foods is also having a potential in the field of health and nutritious products. In this review, potential connection between meat products, personalized nutrition and 3D printing were mentioned briefly. After that, basic working principles of 3D printers and applicability for meat products were explained. Assessment of meat process waste, advantages and limitations, concept of printability and studies in this field were explained and discussed in details.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Mordor Intelligence Reports (2019). 3D Printing Market - Growth, Trends, And Forecast (2019 - 2024), https://www.mordorintelligence.com/industry-reports/3dprinting-market (Erişim Tarihi: 15.09.2019)
  • Abbas Z, Daniel J, Kouzani AZ, Adams S, Whyte DJ, Oliver R, Hemsley B, Palmer S, Balandin S. 2017. 3D Printing of Food for People with Swallowing Difficulties. : 23–29.
  • Attaran M. 2017. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus Horiz [Internet]. 60: 677–688. http://dx.doi.org/10.1016 /j.bushor.2017.05.011
  • Ávila MDR De, Hoz L, Ordóñez JA, Cambero MI. 2014. Dry-cured ham restructured with fibrin. Food Chem. 159: 519–528.
  • Baugreet S, Kerry JP, Brodkorb A, Gomez C, Auty M, Allen P, Hamill RM. 2018. Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design. Meat Sci [Internet]. 142:65–77. Available from: https://doi.org/10.1016 /j.meatsci.2018.03.024
  • Boles JA. 2011. Use of cold-set binders in meat systems. In Processed Meats (pp. 270-298). Woodhead Publishing. Border AJ, Moreno HM. 2008. Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. 1536: 1529–1536.
  • Chattong U, Apichartsrangkoon A, Chaikham P, Supavititpatana T, Bell AE. 2015. Viscoelastic properties and physicochemical characteristics of pressurized ostrich-meat emulsions containing gum additives. Innov Food Sci Emerg Technol [Internet]. 32: 64–69. Available from: http://dx.doi.org/10.1016/j.ifset.2015.07.001
  • Contractor A, Feltner B. 2019. U.S. Patent Application No. 16/247-363.
  • Contractor A, Kanuga C, Feltner B. 2019. U.S. Patent Application No. 10/178,868.
  • Değerli C, El SN. 2017. Üç Boyutlu (3D) Yazıcı Teknolojisi ile Gıda Üretimine Genel Bakış. Türk Tarım - Gıda Bilim ve Teknol Derg. 5: 593–599.
  • Dick A, Bhandari B, Prakash S. 2019a. 3D printing of meat. Meat Sci [Internet]. 153: 35–44. Available from: https://doi.org /10.1016/j.meatsci.2019.03.005
  • Dick A, Bhandari B, Prakash S. 2019b. Post-processing feasibility of composite-layer 3D printed beef. Meat Sci [Internet]. 153: 9–18. Available from: https://doi.org/10.1016 /j.meatsci.2019.02.024
  • Feiner G. 2006. Meat products handbook: Practical science and technology. Elsevier
  • Feng C, Zhang M, Bhandari B. 2018. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review Materials Properties of Printable Edible Inks and Printing Parameters Optimization. Crit Rev Food Sci Nutr [Internet]. 0: 1–8. Available from: https://doi.org/10.1080/10408398.2018.1481823
  • Forgacs G, Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Forgacs G. 2012. Toward engineering functional organ modules by additive manufacturing.
  • Godoi FC, Prakash S, Bhandari BR. 2016. 3d printing technologies applied for food design: Status and prospects. 179: 44–54.
  • Hao L, Mellor S, Seaman O, Henderson J, Sewell N, Sloan M. 2010. Material characterisation and process development for chocolate additive layer manufacturing. Virtual and Physical Prototyping 5 (2): 57–64.
  • Hull CW. 2016. Apparatus for production of three-dimensional objects by stereolithography. 1986. Google Patents.
  • Jang J, Park JY, Gao G, Cho D. 2018. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials [Internet]. 156:88–106. Available from: https://doi.org/10.1016/j.biomaterials.2017.11.030
  • Kading B, Straub J. 2015. Acta Astronautica Utilizing in-situ resources and 3D printing structures for a manned Mars mission. Acta Astronaut [Internet]. 107: 317–326. Available from: http://dx.doi.org/10.1016/j.actaastro.2014.11.036
  • Khot RA, Pennings R, Mueller F. 2015. EdiPulse: Turning physical activity into chocolates. In: Vol. 18. [place unknown]: Association for Computing Machinery; p. 331– 334.
  • Kieliszek M, Misiewicz A. 2014. Microbial transglutaminase and its application in the food industry, A review.: 241–250.
  • Kim HW, Bae H, Jin H. 2017. Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. J Food Eng [Internet]. 215:23–32. Available from: http://dx.doi.org /10.1016/j.jfoodeng.2017.07.017
  • Lipson H, Kurman M. 2013. Fabricated: The new world of 3D printing. John Wiley & Sons.
  • Lipton J, Arnold D, Nigl F, Lopez N, Cohen DL, Norén N, Lipson H. 2010. Multi-material food printing with complex internal structure suitable for conventional post-processing. In Solid Freeform Fabrication Symposium (pp. 809-815).
  • d printer for printing fibrous meat materials The development of 3D food printer for printing fibrous meat materials. In: IOP Conf Ser Mater Sci Eng [Internet]. [place unknown]. Available from: 10.1088/1757-899X/284/1/012019
  • Liu Y, Saeed A, Lan W, Qin W, Laing X. 2019. Properties of 3D printed dough and optimization of printing parameters. Innov Food Sci Emerg Technol [Internet]. 54:9–18. Available from: https://doi.org/10.1016/j.ifset.2019.03.008
  • Liu Z, Zhang M, Bhandari B, Yang C. 2018. Impact of rheological properties of mashed potatoes on 3D printing. J Food Eng [Internet]. 220:76–82. Available from: https://doi.org/10.1016/j.jfoodeng.2017.04.017
  • Lupton D. 2017. Download to delicious : Promissory themes and sociotechnical imaginaries in coverage of 3D printed food in online news sources. Futures [Internet]. 93:44–53. Available from: http://dx.doi.org/10.1016/j.futures.2017.08.001Mantihal S, Prakash S,
  • Bhandari B. 2019. Textural modification of 3D printed dark chocolate by varying internal in fill structure. 121: 648–657.
  • Mantihal S, Prakash S, Godoi FC, Bhandari B. 2019. Effect of additives on thermal , rheological and tribological properties of 3D printed dark chocolate. Food Res Int [Internet]. 119:161–169. Available from: https://doi.org/10.1016 /j.foodres.2019.01.056
  • Meat and Livestock Australia. 2019. 3D printing technology for value-added red meat' 2017. https://www.mla.com.au/newsand-events/industry-news/3d-printing-technology-for-valueadded-red-meat/ Erişim: 15.09.2019
  • Melgar-lalanne G, Hernandez- Alvarez A-J, Salinas-Castro A. 2019. Edible Insects Processing: Traditional and Innovative Technologies [Internet]. 00. Available from: 10.1111/1541- 4337.12463
  • Michel M, Burbidge A. 2019. Nutrition in the digital age - How digital tools can help to solve the personalized nutrition conundrum. Trends Food Sci Technol [Internet]. 90:194–200. Available from: https://doi.org/10.1016/j.tifs.2019.02.018
  • Paglarini CD, Souza C De, Figueiredo G De, Andre V, Vidal S, Martini S, Bruno M, Forte S. 2018. Functional emulsion gels with potential application in meat products. J Food Eng. 222: 29–37.
  • Pallottino F, Hakola L, Costa C, Antonucci F, Figorilli S, Seisto A, Menesatti P. 2016. Printing on Food or Food Printing: a Review.:1–9.
  • Parés D, Saguer E, Carretero C. 2011. Blood by-products as ingredients in processed meat. In Processed meats (pp. 218- 242). Woodhead Publishing.
  • Pintado T, Herrero AM, Triki M, Carmona P. Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters.
  • Portanguen S, Tournayre P, Sicard J, Astruc T, Mirade P. 2019. Trends in Food Science & Technology Toward the design of functional foods and biobased products by 3D printing: A review. Trends Food Sci Technol [Internet]. 86: 188–198. Available from: https://doi.org/10.1016/j.tifs.2019.02.023
  • Santhi D, Kalaikannan A, Malairaj P, Prabhu SA. 2017. Application of microbial transglutaminase in meat foods : A review. Crit Rev Food Sci Nutr [Internet]. 57: 2071–2076. Available from: http://dx.doi.org/10.1080/10408398.2014.945990
  • Severini C, Azzollini D, Albenzio M, Derossi A. 2018. On printability , quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Res Int [Internet]. 106: 666–676. Available from: https://doi.org /10.1016/j.foodres.2018.01.034
  • Severini C, Derossi A, Ricci I, Caporizzi R, Fiore A. 2018. Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J Food Eng [Internet]. 220: 89–100. Available from: https://doi.org/10.1016/j.jfoodeng.2017.08.025
  • Sher D, Tuto X. 2015. Review of 3D Food Printing. Temes de disseny. 31. Southerland D, Walters P, Huson D. 2011. Edible 3D printing. In NIP & Digital Fabrication Conference (Vol. 2011, No. 2, pp. 819-822). Society for Imaging Science and Technology.
  • Sun J, Peng Z, Zhou W, Fuh JYH, Hong GS, Chiu A. 2015. A Review on 3D Printing for Customized Food Fabrication. Procedia Manuf [Internet]. 1: 308–319. Available from: http://dx.doi.org/10.1016/j.promfg.2015.09.057
  • Sol IEJ, Van der Linden D, Van Bommel KJC. 2015. 3D Food Printing: The Barilla Collaboration. Feb-2015.
  • Sun J, Zhou W, Huang D, Fuh JYH, Hong GS. 2015. An Overview of 3D Printing Technologies for Food Fabrication. 8:1605–1615.
  • TÜBER. 2016. Türkiye’ye Özgü Beslenme Rehberı̇ [Internet]. [place unknown]: Sağlık Bakanlığı. Available from: http://beslenme.gov.tr/content/files/arastirmalar/tbsa/1_hazir an_t_ber_rehber_y_ksek_kalite.pdf
  • Vendin K, Birch H, Olsson V. 2019. Insects as food - a review of sustainability, nutrition and consumer attitudes. In: 11th Int Conferance Culin Arts Sci. [place unknown]; p. 145–152.
  • Voon SL, An J, Wong G, Zhang Y, Chua CK. 2019. 3D food printing: a categorized review of inks and their development. 2759.
  • WHO/FAO/UNU Expert Consultation. 2007. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser.:1–265.
  • WHO. 2016. Q&A on the carcinogenicity of the consumption of red meat and processed meat. https://www.who.int /features/qa/cancer-red-meat/en/ (Erişim Tarihi: 15.09.2019
  • Zhang Q, Ma G, Chen H, Han L, Ma J, Zhang W. 2019. Optimization of binding process for premade yak steaks using transglutaminase, sodium caseinate, and carrageenan.:1–11.
APA Değerli C (2020). 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. , 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
Chicago Değerli Celal 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. (2020): 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
MLA Değerli Celal 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. , 2020, ss.1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
AMA Değerli C 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. . 2020; 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
Vancouver Değerli C 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. . 2020; 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
IEEE Değerli C "3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi." , ss.1018 - 1026, 2020. 10.24925/turjaf.v8i5.1018-1026.2978
ISNAD Değerli, Celal. "3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi". (2020), 1018-1026. https://doi.org/10.24925/turjaf.v8i5.1018-1026.2978
APA Değerli C (2020). 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 8(5), 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
Chicago Değerli Celal 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 8, no.5 (2020): 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
MLA Değerli Celal 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.8, no.5, 2020, ss.1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
AMA Değerli C 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2020; 8(5): 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
Vancouver Değerli C 3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2020; 8(5): 1018 - 1026. 10.24925/turjaf.v8i5.1018-1026.2978
IEEE Değerli C "3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 8, ss.1018 - 1026, 2020. 10.24925/turjaf.v8i5.1018-1026.2978
ISNAD Değerli, Celal. "3 Boyutlu (3D) Yazıcı Teknolojisinde Et Ürünleri Üretimi". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 8/5 (2020), 1018-1026. https://doi.org/10.24925/turjaf.v8i5.1018-1026.2978