Nihal KARAKAŞ
(İstanbul Medipol Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Bölümleri, İstanbul Türkiye ve İstanbul Medipol Üniversitesi, Rejeneratif ve Restoratif Tıp Araştırma Merkezi, İstanbul, Türkiye)
MEHMET EVREN OKUR
(Sağlık Bilimleri Üniversitesi, Eczacılık Fakültesi, Farmakoloji Anabilim Dalı, İstanbul, Türkiye)
Irem OZTURK
(İstanbul Medipol Üniversitesi, Rejeneratif ve Restoratif Tıp Araştırma Merkezi, İstanbul, Türkiye)
Şule AYLA
(İstanbul Medipol Üniversitesi, Rejeneratif ve Restoratif Tıp Araştırma Merkezi ve Histoloji ve Embriyoloji Anabilim Dalı, İstanbul, Türkiye)
Ayşe Esra KARADAĞ
(İstanbul Medipol Üniversitesi, Eczacılık Fakültesi, Farmakognozi Anabilim Dalı, İstanbul, Türkiye ve Anadolu Üniversitesi, Sağlık Bilimleri Enstitüsü, Eskişehir, Türkiye)
DERYA ÇİÇEK POLAT
(Ankara Üniversitesi Eczacılık Fakültesi, Farmasötik Botanik Anabilim Dalı, Ankara, Türkiye)
Yıl: 2019Cilt: 34Sayı: 3ISSN: 2149-2042 / 2149-4606Sayfa Aralığı: 297 - 304İngilizce

79 0
Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extract and Cytotoxic Effects on Various Cancer Cell Lines
Objective: Blackthorn (Prunus spinosa L. (Rosaceae) is a shrup whose fruits are consumed as food in Turkey. This study was aimed to evaluate antioxidant activity of methanol extract of P. spinosa and its cytotoxic effects on cancer cell lines. Method: Methanol extract of P. spinosa fruit was evaluated for its in vitro cytotoxic activity on multiform (GBM) brain cancer (LN229, U87 and T98G) and pancreas cancer (PANC-1 and AsPC-1) cell lines. Cell viability assays were performed by calculating the percentage of viable cells using a luminescence system, and spectrophotometrically. measuring its antioxidant ABTS and DPPH radical scavenging activities. Differences were considered as statistically significant at p*<0.001 and p**<0.0005 according to unpaired student t-test. Results: Methanol extract of P. spinosa fruit showed 2548±18 mg GAE/100 g corresponding to the total phenolic content, and moderate antioxidant activity (0.1896±0.1143 and 0.0729±0.0348) by ABTS• and DPPH• assays. Conclusion: To the best of our knowledge, after evaluating the results of brain and pancreas cancer cell lines, significant cytotoxic activities with 50-63% cell viability of GBM brain cancer cells were determined while no cytotoxicity was observed on pancreas cancer cell lines, PANC-1; and AsPC-1. The results of this study showed that the methanol extract of P. spinosa fruit has significant antioxidant capacity and leads to statistically significant decreased viability on glioblastoma brain cancer cells.
DergiAraştırma MakalesiErişime Açık
  • 1. Ayla Ş, Günal MY, Sayın Şakul AA, et al. Effects of Prunus spinosa L. fruits on experimental wound healing. Medeniyet Med J. 2017;32:152-8. [CrossRef]
  • 2. Ruiz-Rodríguez BM, de Ancos B, Sánchez-Moreno C, et al. Wild blackthorn (Prunus spinosa L.) and hawthorn ( Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits. 2014;69:61-73. [CrossRef]
  • 3. Baytop T. Türkiye’de bitkiler ile tedavi 2. Nobel Tıp Kitabevleri, İstanbul, 1999; 204-5.
  • 4. Davis PH. Flora of Turkey and the East Aegean Islands. Vol.4. Edinburgh University Press, Edinburgh UK, 1982; 153.
  • 5. Çalışır S, Haciseferogullari H, Özcan M, Arslan D. Some nutritional and technological properties of wild plum (Prunus spp.) fruits in Turkey. J Food Eng. 2005;66:233-7. [CrossRef]
  • 6. Olszewska M, Wolbis M. Flavonoids from the flowers of Prunus spinosa L. Acta Pol Pharm. 2001;58(5):367-72.
  • 7. Kültür Ş. An ethnobotanical study of Kırklareli (Turkey). Phytol Balcan. 2008;14:279-89.
  • 8. Mustafa B, Hajdari A, Pajazita Q, Syla P, Quave CL, Pieroni A. An ethnobotanical survey of the Gollak region, Kosovo. Genet Resour Crop Evol. 2012;59(5):739-54. [CrossRef]
  • 9. Velickovic JM, Kostic DA, Stojanovic GS, et al. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hem Ind. 2014;68(3):297-303. [CrossRef]
  • 10. Sikora E, Bieniek MI, Borczak B. Composıtıon and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Sci Pol Technol Aliment 2013;12(4):365-72. http://www.food.actapol.net/issue4/volume/3_4_2013.pdf.
  • 11. Fraternale D, Giamperi L, Bucchini A, Sestili P, Paolillo M, Ricci D. Prunus spinosa fresh fruit juice: antioxidant activity in cell-free and cellular systems. Nat Prod Commun. 2009;4:1665-70. [CrossRef]
  • 12. Irizar AC, Fernandez MF, González AG, Ravelo AG. Constituents of Prunus spinosa. J Nat Prod 1992;55:450-4. [CrossRef]
  • 13. Egea I, Sánchez-Bel P, Romojaro F, Pretel MT. Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Foods Hum Nutr. 2010;65:121-9. [CrossRef]
  • 14. Guimarães R, Barros L, Calhelha RC, Carvalho AM, Queiroz MJ, Ferreira IC. Bioactivity of different enriched phenolic extracts of wild fruits from Northeastern Portugal: a comparative study. Plant Foods Hum Nutr. 2014;69:37-42. [CrossRef]
  • 15. Okur ME, Ayla Ş, Çiçek Polat D, Günal MY, Yoltaş A, Biçeroğlu Ö. Novel insight into wound healing properties of methanol extract of Capparis ovata Desf. var. palaestina Zohary fruits. J Pharm Pharmacol. 2018;70:1401-13. [CrossRef]
  • 16. Spanos GA, Wrolstad RE. Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. J Agric Food Chem. 1990;38:1565-71. [CrossRef]
  • 17. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200. [CrossRef]
  • 18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-7. [CrossRef]
  • 19. Okur ME, Polat DC, Ozbek H, Yılmaz S, Yoltaş A, Arslan R. Evaluation of the antidiabetic property of Capparis ovata Paleastina Zoh. Extracts using in vivo and in vitro approaches. Endoc Metab Immune Disord - Drug Tar. 2018;18:489-501. [CrossRef]
  • 20. Gulsoy-Toplan G, Goger F, Yildiz-Peko A, Gibbons S, Sariyar G, Mat A. Chemical constituents of the different parts of Colchicum micranthum and C. chalcedonicum and their Cytotoxic Activities. Nat Prod Commun. 2018;13:535-8. [CrossRef]
  • 21. Dhanani T, Shah S, Gajbhiye NA, Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab J Chem. 2017;10:1193-9. [CrossRef]
  • 22. Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006;106:290-302. [CrossRef]
  • 23. Guimarães R, Barros L, Calhelha RC, Carvalho AM, Queiroz MJ, Ferreira IC. Bioactivity of different enriched phenolic extracts of wild fruits from Northeastern Portugal: a comparative study. Plant Foods Hum Nutr. 2014;69:37-42. [CrossRef]
  • 24. Shahat AA, Hidayathulla S, Khan AA, et al. Phytochemical profiling, antioxidant and anticancer activities of Gastrocotyle hispida growing in Saudi Arabia. Acta Trop. 2019;191:243-7. [CrossRef]
  • 25. Roleira FM, Tavares-da-Silva EJ, Varela CL, et al. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem. 2015;183:235-58. [CrossRef]
  • 26. Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143:383-96. [CrossRef]
  • 27. Men K, Duan X, Wei XW, et al. Nanoparticle-delivered quercetin for cancer therapy. Anticancer Agents Med Chem. 2014;14:826-32. [CrossRef]

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.