Yıl: 2020 Cilt: 48 Sayı: 3 Sayfa Aralığı: 330 - 354 Metin Dili: Türkçe DOI: doi: 10.5543/tkda.2020.74332 İndeks Tarihi: 15-11-2020

Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri

Öz:
Sodyum glikoz ko-transporter-2 inhibitörleri (SGLT-2i), glükoz geri emiliminin sağlandığı böbrek proksimal tübüllerinde glikoz reabsorbsiyonunu engelleyip glükozuri, diürez ve natriüreze neden olarak etkili olan yeni antidiyabetik ajanlardır. Geniş çaplı randomize klinik çalışmalarda, aterosklerotik kardiyovasküler (KV) hastalığı veya yüksek KV risk faktörleri olan tip 2 diyabette (T2DM), majör KV olayları ve kalp yetersizliğine (KY) bağlı hastane yatışlarını azalttığı ortaya konmuştur. Bu çalışmalarda en büyük ve tutarlı etkinin KY nedenli hastane yatışlarını azaltması üzerine olduğu gözlenmiştir. KY nedenli hastane yatışlarına etkisinin KY tanısı bulunan hasta subgruplarında da gösterilmiş olması SGLT2i’lerin T2DM olsun olmasın tüm KY olgularında klinik yararlar sağlayabileceği düşüncesini ortaya koymuştur. Yeni yayınlanan DAPA-HF çalışmasında, standart KY tedavisi üzerine eklenen ve SGLT-2i olan dapagliflozinin diyabet olsun olmasın KY bulunan olgularda KY nedenli hastane yatışlarını, KV mortalite ve tüm nedenli mortaliteyi azalttığı, yaşam kalitesini düzelttiği gösterilmiştir. Bu sonuçlar SGLT2i’lerin KY’de etkin bir tedavi seçeneği olma potansiyeline sahip olduğunu desteklemektedir. Bu derlemede SGLT2i’lerin KY tedavisindeki rolü değerlendirilmektedir.
Anahtar Kelime:

Sodium glucose co-transporter 2 inhibitors in heart failure therapy

Öz:
Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are a new class of drugs for patients with type 2 diabetes (T2DM) which inhibit urinary glucose reabsorption in the proximal tubule of the nephron and result in glucosuria, natriuresis and diuresis. In large, randomized clinical trials, SGLT-2i have been shown to reduce major cardiovascular (CV) events and heart failure (HF) hospitalizations in patients with T2DM who have atherosclerotic CV disease or CV risk factors. In these trials, SGLT-2i is have their greatest and most consistent effect on reducing the risk of HF hospitalization. The reduction in HF hospitalization was also observed in subgroups of patients with a HF diagnosis at baseline, which raised the possibility of a clinical benefit of SGLT-2i in HF patients, regardless of the presence or absence of T2DM. In very recently published DAPA-HF trial, a SGLT-2i, dapagliflozin treatment on top of standard HF therapy has been shown to have clear clinical benefits in terms of reducing HF hospitalization, CV mortality, all-cause mortality and improving quality of life in HF patients. This compelling evidence suggests that SGLT-2i have a potential to be an effective treatment option in HF, regardless of diabetes. This article provides a comprehensive overview focused on the role of SGLT-2i in the treatment of HF.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Diğer Erişim Türü: Erişime Açık
  • 1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015;373:2117–28.
  • 2. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017;377:644–57.
  • 3. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019;380:347–57.
  • 4. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019;381:19952008.
  • 5. Nassif ME, Windsor SL, Tang F, Khariton Y, Husain M, Inzucchi SE, et al. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial. Circulation 2019;140:1463–76.
  • 6. Karg MV, Bosch A, Kannenkeril D, Striepe K, Ott C, Schneider MP, et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol 2018;17:5.
  • 7. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 2018;41:356–63.
  • 8. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 2018;20:479–87.
  • 9. Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, Chen L. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20:458–62.
  • 10. Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol 2019;18:46.
  • 11. Zhao D, Liu H, Dong P. Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Hum Hypertens 2019;33:327–39.
  • 12. Ferdinand KC, Izzo JL, Lee J, Meng L, George J, Salsali A, et al. Antihyperglycemic and Blood Pressure Effects of Empagliflozin in Black Patients With Type 2 Diabetes Mellitus and Hypertension. Circulation 2019;139:2098–109.
  • 13. Kashiwagi A, Maegawa H. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J Diabetes Investig 2017;8:416–27.
  • 14. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019;380:2295–306.
  • 15. Baartscheer A, Schumacher CA, Wüst RC, Fiolet JW, Stienen GJ, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017;60:568–73.
  • 16. Lee TI, Chen YC, Lin YK, Chung CC, Lu YY, Kao YH, et al. Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2019;20:1680.
  • 17. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 2015;12:78–89.
  • 18. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 2018;17:144.
  • 19. Li C, Zhang J, Xue M, Li X, Han F, Liu X, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol 2019;18:15.
  • 20. Papademetriou V, Geladari E. Sodium-glucose Cotransporter 2 Inhibitors: The Impact on Development and Progression of Heart Failure. Cardiovasc Hematol Disord Drug Targets 2018;18:127–133.
  • 21. Kalra S, Jain A, Ved J, Unnikrishnan AG. Sodium-glucose cotransporter 2 inhibition and health benefits: The Robin Hood effect. Indian J Endocrinol Metab 2016;20:725–9.
  • 22. Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis. Diabetes Care 2016;39:1108–14.
  • 23. Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, et al. Sodium-glucose cotransporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail 2019;21:862–73.
  • 24. Oh CM, Cho S, Jang JY, Kim H, Chun S, Choi M, et al. Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure. Korean Circ J 2019;49:118395.
  • 25. Yoshioka H, Ohishi R, Hirose Y, Torii-Goto A, Park SJ, Miura N, et al. Chronopharmacology of dapagliflozin-induced antihyperglycemic effects in C57BL/6J mice. Obes Res Clin Pract 2019;13:505–10.
  • 26. Díaz-Rodríguez E, Agra RM, Fernández ÁL, Adrio B, García-Caballero T, González-Juanatey JR, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res 2018;114:336–46.
  • 27. Gaspari T, Spizzo I, Liu H, Hu Y, Simpson RW, Widdop RE, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: A potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res 2018;15:64–73.
  • 28. Cintra RMR, Soares AAS, Breder I, Munhoz DB, Barreto J, Kimura-Medorima ST, et al. ADDENDA-BHS2 trial investigators. Assessment of dapagliflozin effect on diabetic endothelial dysfunction of brachial artery (ADDENDA-BHS2 trial): rationale, design, and baseline characteristics of a randomized controlled trial. Diabetol Metab Syndr 2019;11:62.
  • 29. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019;393:31–9.
  • 30. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37: 2129–200.
  • 31. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J 2020;41: 255–323.
  • 32. Seferovic PM, Ponikowski P, Anker SD, Bauersachs J, Chioncel O, Cleland JGF, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019;21:1169–86.
  • 33. MacDonald MR, Petrie MC, Hawkins NM, Petrie JR, Fisher M, McKelvie R, et al. Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J 2008;29:122440.
  • 34. Wallner M, Eaton DM, von Lewinski D, Sourij H. Revisiting the Diabetes-Heart Failure Connection. Curr Diab Rep 2018;18:134.
  • 35. Fitchett D, Butler J, van de Borne P, Zinman B, Lachin JM, Wanner C, et al. EMPA-REG OUTCOME® trial investigators. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J 2018;39:363–70.
  • 36. Figtree GA, Rådholm K, Barrett TD, Perkovic V, Mahaffey KW, de Zeeuw D, et al. Effects of Canagliflozin on Heart Failure Outcomes Associated With Preserved and Reduced Ejection Fraction in Type 2 Diabetes Mellitus. Circulation 2019;139:2591–3.
  • 37. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. EMPA-REG OUTCOME® trial investigators. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 2016;37:1526–34.
  • 38. Rådholm K, Figtree G, Perkovic V, Solomon SD, Mahaffey KW, de Zeeuw D, et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus. Circulation. 2018;138:458–68.
  • 39. Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A, Furtado RHM, et al. Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus. Circulation 2019;139:2528–36.
  • 40. McMurray JJV, DeMets DL, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM, et al. The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail 2019;21:1402–11.
  • 41. Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N, et al. CANVAS Program Collaborative Group. Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events: Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 2018;137:323–34.
  • 42. Lan NSR, Fegan PG, Yeap BB, Dwivedi G. The effects of sodium-glucose cotransporter 2 inhibitors on left ventricular function: current evidence and future directions. ESC Heart Fail 2019;6:927–35.
  • 43. Zelniker TA, Braunwald E. Cardiac and Renal Effects of Sodium-Glucose Co-Transporter 2 Inhibitors in Diabetes: JACC State-of-the-Art Review. J Am Coll Cardiol 2018;72:184555.
  • 44. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–72.
  • 45. Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol 2014;307:F317–25.
  • 46. Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One 2014;9:e100777.
  • 47. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2013;15:463–73.
  • 48. Yamout H, Perkovic V, Davies M, Woo V, de Zeeuw D, Mayer C, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes and stage 3 nephropathy. Am J Nephrol 2014;40:64–74.
  • 49. Dziuba J, Alperin P, Racketa J, Iloeje U, Goswami D, Hardy E, et al. Modeling effects of SGLT-2 inhibitor dapagliflozin treatment versus standard diabetes therapy on cardiovascular and microvascular outcomes. Diabetes Obes Metab 2014;16:628–35.
  • 50. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. EMPA-REG OUTCOME Investigators. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016;375:323–34.
  • 51. Kluger AY, Tecson KM, Lee AY, Lerma EV, Rangaswami J, Lepor NE, et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Cardiovasc Diabetol 2019;18:99.
  • 52. Cherney DZI, Zinman B, Inzucchi SE, Koitka-Weber A, Mattheus M, von Eynatten M, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2017;5:610–21.
  • 53. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 2018;137:119–29.
  • 54. Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol 2018;6:691−704.
  • 55. Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D, Mahaffey KW, et al. Cardiovascular and Renal Outcomes With Canagliflozin According to Baseline Kidney Function. Circulation 2018;138:1537−50.
  • 56. Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 2019;7:606−17.
  • 57. Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O, Cahn A, et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation 2019;139:2516−27.
  • 58. Nadkarni GN, Ferrandino R, Chang A, Surapaneni A, Chauhan K, Poojary P, et al. Acute Kidney Injury in Patients on SGLT2 Inhibitors: A Propensity-Matched Analysis. Diabetes Care 2017;40:1479–85.
  • 59. McMurray J. EMPA-REG - the “diuretic hypothesis”. J Diabetes Complications 2016;30:3–4.
  • 60. Tanaka H, Takano K, Iijima H, Kubo H, Maruyama N, Hashimoto T, et al. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus. Adv Ther 2017;34:436−51.
  • 61. Sha S, Polidori D, Heise T, Natarajan J, Farrell K, Wang SS, et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2014;16:1087−95.
  • 62. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Barsotti E, Clerico A, et al. Renal Handling of Ketones in Response to Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 2 Diabetes. Diabetes Care 2017;40:771−6.
  • 63. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013;15:853–62.
  • 64. Sairaku A, Nakano Y, Kihara Y. Increased urine output by ipragliflozin in a non-diabetic patient with a diuretic-resistant heart failure. Int J Cardiol 2015;180:42–3.
  • 65. Mordi NA, Mordi IR, Singh JS, Baig F, Choy AM, McCrimmon RJ, et al. Renal and Cardiovascular Effects of sodiumglucose cotransporter 2 (SGLT2) inhibition in combination with loop Diuretics in diabetic patients with Chronic Heart Failure (RECEDE-CHF): protocol for a randomised controlled double-blind cross-over trial. BMJ Open 2017;7:e018097.
  • 66. Wilcox CS, Shen W, Boulton DW, Leslie BR, Griffen SC. Interaction Between the Sodium-Glucose-Linked Transporter 2 Inhibitor Dapagliflozin and the Loop Diuretic Bumetanide in Normal Human Subjects. J Am Heart Assoc 2018;7:e007046.
  • 67. Mullens W, Damman K, Harjola VP, Mebazaa A, BrunnerLa Rocca HP, Martens P, et al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019;21:137−55.
  • 68. Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe?. Postgrad Med 2018;130:72–82.
  • 69. Ueda P, Svanström H, Melbye M, Eliasson B, Svensson AM, Franzén S, et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ 2018;363:k4365.
  • 70. Handelsman Y, Henry RR, Bloomgarden ZT, Dagogo-Jack S, DeFronzo RA, Einhorn D, et al. American association of clinical endocrinologists and american college of endocrinology position statement on the association of sglt-2 inhibitors and diabetic ketoacidosis. Endocr Pract 2016;22:753−62.
  • 71. Wanner C. EMPA-REG OUTCOME: The Nephrologist’s Point of View. Am J Cardiol 2017;120:S59–67.
  • 72. Cahn A, Melzer-Cohen C, Pollack R, Chodick G, Shalev V. Acute renal outcomes with sodium-glucose co-transporter-2 inhibitors: Real-world data analysis. Diabetes Obes Metab 2019;21:340–8.
  • 73. Bersoff-Matcha SJ, Chamberlain C, Cao C, Kortepeter C, Chong WH. Fournier Gangrene Associated With SodiumGlucose Cotransporter-2 Inhibitors: A Review of Spontaneous Postmarketing Cases. Ann Intern Med 2019;170:764–9.
  • 74. Kumar S, Costello AJ, Colman PG. Fournier’s gangrene in a man on empagliflozin for treatment of Type 2 diabetes. Diabet Med 2017;34:1646–8.
  • 75. Omer TAM, Dharan SS, Adler A. Sodium–glucosecotransporter 2 (SGLT–2) inhibitor dapagliflozin and Fournier’s gangrene: a life–threatening severe adverseoutcome. Case report. Diabet Med 2018;35:97–106.
  • 76. Rodler S, Weig T, Finkenzeller C, Stief C, Staehler M. Fournier´s Gangrene Under Sodium-Glucose Cotransporter 2 Inhibitor Therapy as a Life-Threatening Adverse Event: A Case Report and Review of the Literature. Cureus 2019;11:e5778
  • 77. Hirji I, Guo Z, Andersson SW, Hammar N, Gomez-Caminero A. Incidence of urinary tract infection among patients with type 2 diabetes in the UK General Practice Research Database (GPRD). J Diabetes Complications 2012;26:513–6
  • 78. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and metaanalysis. Ann Intern Med 2013;159:262−74.
  • 79. Yang XP, Lai D, Zhong XY, Shen HP, Huang YL. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. Eur J Clin Pharmacol 2014;70:1149–58.
  • 80. Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: a systematic review and metaanalysis of randomized controlled trials. Diabetes Metab Res Rev 2014;30:204–21.
  • 81. Liakos A, Karagiannis T, Athanasiadou E, Sarigianni M, Mainou M, Papatheodorou K, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 2014;16:984–93.
  • 82. Liu XY, Zhang N, Chen R, Zhao JG, Yu P. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 dia betes: a meta-analysis of randomized controlled trials for 1 to 2years. J Diabetes Complications 2015;29:1295–303.
  • 83. Puckrin R, Saltiel MP, Reynier P, Azoulay L, Yu OHY, Filion KB. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2018;55:503–14.
  • 84. Li D, Wang T, Shen S, Fang Z, Dong Y, Tang H. Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2017;19:348–55.
  • 85. Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia 2017;60:1862–72.
  • 86. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone 2016;82:93–100.
  • 87. U.S. Food and Drug Administration. FDA Drug Safety Communication: FDAreviseslabel of diabetes drugcanagliflozin (Invokana, Invokamet) toinclude updates on bone fracture risk and new information on decreased bone mineral density. Available at: https://www.fda.gov/Drugs/DrugSafety/ ucm461449.htm. Accessed Feb 28, 2020.
  • 88. Tang HL, Li DD, Zhang JJ, Hsu YH, Wang TS, Zhai SD, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 2016;18:1199–206.
  • 89. Ruanpeng D, Ungprasert P, Sangtian J, Harindhanavudhi T. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Metab Res Rev 2017;33:10.1002/dmrr.2903.
  • 90. Azharuddin M, Adil M, Ghosh P, Sharma M. Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: A systematic literature review and Bayesian network meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2018;146:180–90.
  • 91. Chang HY, Singh S, Mansour O, Baksh S, Alexander GC. Association Between Sodium-Glucose Cotransporter 2 Inhibitors and Lower Extremity Amputation Among Patients With Type 2 Diabetes. JAMA Intern Med 2018;178:1190–8.
  • 92. Li D, Yang JY, Wang T, Shen S, Tang H. Risks of diabetic foot syndrome and amputation associated with sodium glucose co-transporter 2 inhibitors: A Meta-analysis of Randomized Controlled Trials. Diabetes Metab 2018;44:410–4.
  • 93. Jardiance (empagliflozintablets, for oral use) [package Insert]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc.; 2018. Available at: https://docs.boehringer-ingelheim.com/ Prescribing%20Information/PIs/Jardiance/jardiance.pdf. Accessed Feb 28, 2020.
  • 94. Invokana (canagliflozintablets, for oral use) [package Insert]. Titusvlle, NJ: Janssen Pharmaceuticals, Inc.; 2018. Available at: http://www.janssenlabels.com/package-insert/productmonograph/prescribing-information/INVOKANA-pi.pdf. Accessed Feb 28, 2020.
  • 95. Farixga (dapagliflozintablets, for oral use) [package Insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_ docs/label/2019/202293s015lbl.pdf. Accessed Feb 28, 2020.
  • 96. Steglatro (ertugliflozintablets, for oral use) [package Insert]. Whitehouse Station, NJ: Merck Sharp&Dohme Corp; 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_ docs/label/2017/209803s000lbl.pdf. Accessed Feb 28, 2020.
  • 97. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015;75:33–59.
  • 98. Cahn A, Mosenzon O, Wiviott SD, Rozenberg A, Yanuv I, Goodrich EL, et al. Efficacy and Safety of Dapagliflozin in the Elderly: Analysis From the DECLARE-TIMI 58 Study. Diabetes Car 2020;43:468–75.
  • 99. Matthews DR, Paldánius PM, Proot P, Chiang Y, Stumvoll M, Del Prato S, et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet 2019;394:1519–29.
  • 100. Berg DD, Wiviott SD, Scirica BM, Gurmu Y, Mosenzon O, Murphy SA, et al. Heart Failure Risk Stratification and Efficacy of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes Mellitus. Circulation 2019;140:1569–77.
  • 101. Taylor SI, Blau JE, Rother KI, Beitelshees AL. SGLT2 inhibitors as adjunctive therapy for type 1 diabetes: balancing benefits and risks. Lancet Diabetes Endocrinol 2019;7:94958.
  • 102. Merovci A, Mari A, Solis-Herrera C, Xiong J, Daniele G, Chavez-Velazquez A, et al. Dapagliflozin lowers plasma glucose concentration and improves β-cell function. J Clin Endocrinol Metab 2015;100:1927–32.
APA Çavuşoğlu Y, Altay H, CAHN A, ÇELİK A, DEMİR Ş, Kılıçaslan B, Nalbantgil S, RAZ I, Temizhan A, YILDIRIMTÜRK Ö, YILMAZ M (2020). Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. , 330 - 354. doi: 10.5543/tkda.2020.74332
Chicago Çavuşoğlu Yüksel,Altay Hakan,CAHN Avivit,ÇELİK Ahmet Duran,DEMİR Şerafettin,Kılıçaslan Barış,Nalbantgil Sanem,RAZ Itamar,Temizhan Ahmet,YILDIRIMTÜRK Özlem,YILMAZ MEHMET BIRHAN Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. (2020): 330 - 354. doi: 10.5543/tkda.2020.74332
MLA Çavuşoğlu Yüksel,Altay Hakan,CAHN Avivit,ÇELİK Ahmet Duran,DEMİR Şerafettin,Kılıçaslan Barış,Nalbantgil Sanem,RAZ Itamar,Temizhan Ahmet,YILDIRIMTÜRK Özlem,YILMAZ MEHMET BIRHAN Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. , 2020, ss.330 - 354. doi: 10.5543/tkda.2020.74332
AMA Çavuşoğlu Y,Altay H,CAHN A,ÇELİK A,DEMİR Ş,Kılıçaslan B,Nalbantgil S,RAZ I,Temizhan A,YILDIRIMTÜRK Ö,YILMAZ M Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. . 2020; 330 - 354. doi: 10.5543/tkda.2020.74332
Vancouver Çavuşoğlu Y,Altay H,CAHN A,ÇELİK A,DEMİR Ş,Kılıçaslan B,Nalbantgil S,RAZ I,Temizhan A,YILDIRIMTÜRK Ö,YILMAZ M Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. . 2020; 330 - 354. doi: 10.5543/tkda.2020.74332
IEEE Çavuşoğlu Y,Altay H,CAHN A,ÇELİK A,DEMİR Ş,Kılıçaslan B,Nalbantgil S,RAZ I,Temizhan A,YILDIRIMTÜRK Ö,YILMAZ M "Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri." , ss.330 - 354, 2020. doi: 10.5543/tkda.2020.74332
ISNAD Çavuşoğlu, Yüksel vd. "Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri". (2020), 330-354. https://doi.org/doi: 10.5543/tkda.2020.74332
APA Çavuşoğlu Y, Altay H, CAHN A, ÇELİK A, DEMİR Ş, Kılıçaslan B, Nalbantgil S, RAZ I, Temizhan A, YILDIRIMTÜRK Ö, YILMAZ M (2020). Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. Türk Kardiyoloji Derneği Arşivi, 48(3), 330 - 354. doi: 10.5543/tkda.2020.74332
Chicago Çavuşoğlu Yüksel,Altay Hakan,CAHN Avivit,ÇELİK Ahmet Duran,DEMİR Şerafettin,Kılıçaslan Barış,Nalbantgil Sanem,RAZ Itamar,Temizhan Ahmet,YILDIRIMTÜRK Özlem,YILMAZ MEHMET BIRHAN Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. Türk Kardiyoloji Derneği Arşivi 48, no.3 (2020): 330 - 354. doi: 10.5543/tkda.2020.74332
MLA Çavuşoğlu Yüksel,Altay Hakan,CAHN Avivit,ÇELİK Ahmet Duran,DEMİR Şerafettin,Kılıçaslan Barış,Nalbantgil Sanem,RAZ Itamar,Temizhan Ahmet,YILDIRIMTÜRK Özlem,YILMAZ MEHMET BIRHAN Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. Türk Kardiyoloji Derneği Arşivi, vol.48, no.3, 2020, ss.330 - 354. doi: 10.5543/tkda.2020.74332
AMA Çavuşoğlu Y,Altay H,CAHN A,ÇELİK A,DEMİR Ş,Kılıçaslan B,Nalbantgil S,RAZ I,Temizhan A,YILDIRIMTÜRK Ö,YILMAZ M Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. Türk Kardiyoloji Derneği Arşivi. 2020; 48(3): 330 - 354. doi: 10.5543/tkda.2020.74332
Vancouver Çavuşoğlu Y,Altay H,CAHN A,ÇELİK A,DEMİR Ş,Kılıçaslan B,Nalbantgil S,RAZ I,Temizhan A,YILDIRIMTÜRK Ö,YILMAZ M Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri. Türk Kardiyoloji Derneği Arşivi. 2020; 48(3): 330 - 354. doi: 10.5543/tkda.2020.74332
IEEE Çavuşoğlu Y,Altay H,CAHN A,ÇELİK A,DEMİR Ş,Kılıçaslan B,Nalbantgil S,RAZ I,Temizhan A,YILDIRIMTÜRK Ö,YILMAZ M "Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri." Türk Kardiyoloji Derneği Arşivi, 48, ss.330 - 354, 2020. doi: 10.5543/tkda.2020.74332
ISNAD Çavuşoğlu, Yüksel vd. "Kalp yetersizliği tedavisinde sodyum glikoz ko-transporter 2 inhibitörleri". Türk Kardiyoloji Derneği Arşivi 48/3 (2020), 330-354. https://doi.org/doi: 10.5543/tkda.2020.74332