Yıl: 2020 Cilt: 8 Sayı: 3 Sayfa Aralığı: 275 - 281 Metin Dili: İngilizce DOI: 10.14235/bas.galenos.2019.3491 İndeks Tarihi: 14-11-2020

Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells

Öz:
Objective: Cancer stem cells (CSCs) are a small population incancer, which are responsible for therapeutic resistance, relapse andmetastasis. Flavopiridol has antitumor activity against various typesof cancer cells. The mechanism of action of flavopiridol on CD44+/CD24- breast CSCs has not yet been fully elucidated. The aim ofthis study was to evaluate the mechanism of action of flavopiridolon breast CSCs (BCSC) in terms of apoptosis, cell cycle andbiomolecular changes.Methods: In human breast cancer, cells with CD44+/CD24−markers were isolated from MCF-7 cell line using flow cytometry.The induction of apoptosis was investigated by Annexin-V. Theeffect of flavopiridol on cell cycle arrest was determined and thepercent of cell populations at G0/G1, S and G2/M cycles wereidentified. The effect of the drug on three-dimensional cell cultureswas investigated using a multicellular tumor spheroid model.In addition, the effect of flavopiridol on biomolecules has beenevaluated using Fourier transform infrared (FTIR) spectroscopy,which has recently been used effectively in various scientific fields.Results: Flavopiridol especially induced early apoptosis. Cell cycleanalyses revealed that flavopiridol induced cell cycle arrest in G0/G1phase. Decreased number and diameter of spheroids was observedfollowing flavopiridol treatment. ATR-FTIR data showed thattreatment with flavopiridol led to significant changes in nucleicacids.Conclusion: According to the data obtained in this study,flavopiridol exhibits anticancer effects by altering the structure/expression level of nucleic acids and changing cell cycle progressionand inducing apoptosis. These finding reveals that flavopiridol canbe an effective antitumor agent for the treatment of breast cancerafter in vivo and phase studies are completed.
Anahtar Kelime:

Meme Kanseri Kök Hücrelerinde Flavopiridolün Hücre Döngüsü, Apoptozis ve Biyomolekül Yapı Değişimleri Üzerine Etkisi

Öz:
Amaç: Kanser kök hücreleri (KKH) terapötik direnç, relaps ve metastazdan sorumlu olan oldukça küçük bir hücre popülasyondan oluşmaktadır. Flavopiridol (Alvocidib), çeşitli KKH’lerine karşı anti-tümör aktiviteye sahiptir. Flavopiridolün CD44+/CD24- meme KKH (MKKH) üzerindeki etki mekanizması henüz tam olarak aydınlatılamamıştır. Bu çalışmada, apoptozis, hücre döngüsü ve biyomoleküler değişiklikler dahil olmak üzere flavopiridolün MKKH üzerindeki etki mekanizmasının çeşitli şekillerde değerlendirilmesi amaçlanmıştır. Yöntemler: MCF-7 KKH hattı içerisindeki CD44+/CD24- yüzey belirteç özelliklerine sahip MKKH, akış sitometrisi kullanılarak izole edilmiştir. Apoptozis indüksiyonu Annexin-V yöntemi ile incelenmiştir. Flavopiridolün hücre döngüsü tutulumu üzerine etkisi Muse Cell Analyzer ile belirlenmiş ve G0/G1, S ve G2/M döngüsündeki hücre populasyonları yüzde olarak ifade edilmiştir. İlacın üç boyutlu hücre kültürlerindeki etkisi multiselüler tümör sferoid modeli kullanılarak incelenmiştir. Buna ek olarak, flavopiridolün biyomoleküller üzerindeki etkisi, son zamanlarda çeşitli alanlarda oldukça etkin bir şekilde kullanılan Fourier dönüşüm kızılötesi (FTIR) spektroskopisi kullanılarak değerlendirilmiştir. Bulgular: Flavopiridol spesifik olarak erken apoptozu indüklemiştir. Hücre döngü analizleri, flavopiridolün G0/G1 arrestine yol açtığını ortaya koymuştur. Flavopiridol uygulamasından sonra sferoid sayısı ve çapında azalma tespit edilmiştir. ATR-FTIR verileri, flavopiridol uygulamasının hücre içindeki nükleik asitlerde önemli değişimlere yol açtığını göstermiştir. Sonuç: Elde edilen bulgular, flavopiridolün nükleik asitlerin yapısını/expresyon seviyesini ve hücre döngüsünü değiştirdiğini ve apoptozu indükleyerek anti-kanser etkiler sergilediğini göstermektedir. Bu veriler, in vivo ve faz çalışmaları tamamlandıktan sonra flavopiridolün meme kanser tedavisi için etkili bir terapötik molekül olabileceğini ortaya koymaktadır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol 2010;28:4006-12.
  • 2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells. Cancer, and cancer stem cells. Nature 2001;414:105-11.
  • 3. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010;120:41-50.
  • 4. Al Hajj M, Wicha MS, Benito Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983-8.
  • 5. Thapa R, Wilson GD. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int 2016;2016:2087204.
  • 6. DiPippo AJ, Patel NK, Barnett CM. Cyclin-Dependent Kinase Inhibitors for the Treatment of Breast Cancer: Past, Present, and Future. Pharmacotherapy 2016;36:652-67.
  • 7. Shapiro GI. Preclinical and clinical development of the cyclindependent kinase inhibitor flavopiridol. Clin Cancer Res 2004;10:4270-5.
  • 8. Erol A, Acikgoz E, Guven U, Duzagac F, Turkkani A, Colcimen N, et al. Ribosome biogenesis mediates antitumor activity of flavopiridol in CD44+/CD24- breast cancer stem cells. Oncol Lett 2017;14:6433- 40.
  • 9. Soner BC, Aktug H, Acikgoz E, Duzagac F, Güven U, Ayla S, et al. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol. Int J Mol Med 2014;34:1249-56.
  • 10. Bozok Cetintas V, Acikgoz E, Yigitturk G, Demir K, Oktem G, Tezcanlı Kaymaz B, et al. Effects of flavopiridol on critical regulation pathways of CD133high/CD44high lung cancer stem cells. Medicine (Baltimore) 2016;95:5150.
  • 11. Derenne A, Verdonck M, Goormaghtigh E. The Effect of Anticancer Drugs on Seven Cell Lines Monitored by FTIR Spectroscopy. Analyst 2012;137:3255-64.
  • 12. Goormaghtigh E, Ruysschaert JM. Subtraction of Atmospheric Water Contribution in Fourier Transform Infrared Spectroscopy of Biological Membranes and Proteins. Spectrochimica Acta Part A: Molecular Spectroscopy 1994;50:2137-44.
  • 13. Güler G, Acikgoz E, Karabay Yavasoglu NÜ, Bakan B, Goormaghtigh E, Aktug H. Deciphering the Biochemical Similarities and Differences among Mouse Embryonic Stem Cells, Somatic and Cancer Cells Using ATR-FTIR Spectroscopy. Analyst 2018;143:1624-34.
  • 14. Güler G, Acikgoz E, Öktem G. Determination of Cellular Differences of CD133+/CD44+ Prostate Cancer Stem Cells in Two-Dimensional and Three-Dimensional Media by Fourier Transformation Infrared Spectroscopy. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi 2019;33:45-56.
  • 15. Güler G, Gärtner RM, Ziegler C, Mäntele W. Lipid-Protein Interactions in the Regulated Betaine Symporter BetP Probed by Infrared Spectroscopy. J Biol Chem 2016;291:4295-307.
  • 16. Güler G, Guven U, Oktem G. Characterization of CD133 + /CD44 + Human Prostate Cancer Stem Cells with ATR-FTIR Spectroscopy. Analyst 2019;144:2138-49.
  • 17. Acikgoz E, Güler G, Camlar M, Oktem G, Aktug H. Glycogen Synthase Kinase-3 Inhibition in Glioblastoma Multiforme Cells Induces Apoptosis, Cell Cycle Arrest and Changing Biomolecular Structure. Spectrochim Acta A Mol Biomol Spectrosc 2019;209:150- 64.
  • 18. Diem M, Boydston-White S, Chiriboga L. Infrared Spectroscopy of Cells and Tissues: Shining Light onto a Novel Subject. Appl Spectrosc 1999;53:148-61.
  • 19. Ozdil B, Güler G, Acikgoz E, Kocaturk DC, Aktug H. The Effect of Extracellular Matrix on the Differentiation of Mouse Embryonic Stem Cells. J Cell Biochem 2019;121:269-83.
  • 20. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.
  • 21. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006;8:59.
  • 22. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005;11:1154-9.
  • 23. Wittmann S, Bali P, Donapaty S, Nimmanapalli R, Guo F, Yamaguchi H, et al. Flavopiridol down-regulates antiapoptotic proteins and sensitizes human breast cancer cells to epothilone B-induced apoptosis. Cancer Res 2003;63:93-9.
  • 24. Senderowicz AM. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 1999;17:313- 20.
  • 25. Shao X, Gao D, Wang Y, Jin F, Wu Q, Liu H. Application of metabolomics to investigate the antitumor mechanism of flavopiridol in MCF-7 breast cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1025:40-7.
  • 26. Bible KC, Bible RH Jr, Kottke TJ, Svingen PA, Xu K, Pang YP, et al. Flavopiridol binds to duplex DNA. Cancer Res 2000;60:2419-28.
  • 27. Ray B, Agarwal S, Lohani N, Rajeswari MR, Mehrotra R. Structural, conformational and thermodynamic aspects of groove-directedintercalation of flavopiridol into DNA. J Biomol Struct Dyn 2016;34:2518-35.
APA Acikgoz E, Güler G, Öktem G (2020). Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. , 275 - 281. 10.14235/bas.galenos.2019.3491
Chicago Acikgoz Eda,Güler Günnur,Öktem Gülperi Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. (2020): 275 - 281. 10.14235/bas.galenos.2019.3491
MLA Acikgoz Eda,Güler Günnur,Öktem Gülperi Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. , 2020, ss.275 - 281. 10.14235/bas.galenos.2019.3491
AMA Acikgoz E,Güler G,Öktem G Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. . 2020; 275 - 281. 10.14235/bas.galenos.2019.3491
Vancouver Acikgoz E,Güler G,Öktem G Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. . 2020; 275 - 281. 10.14235/bas.galenos.2019.3491
IEEE Acikgoz E,Güler G,Öktem G "Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells." , ss.275 - 281, 2020. 10.14235/bas.galenos.2019.3491
ISNAD Acikgoz, Eda vd. "Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells". (2020), 275-281. https://doi.org/10.14235/bas.galenos.2019.3491
APA Acikgoz E, Güler G, Öktem G (2020). Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. Bezmiâlem Science, 8(3), 275 - 281. 10.14235/bas.galenos.2019.3491
Chicago Acikgoz Eda,Güler Günnur,Öktem Gülperi Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. Bezmiâlem Science 8, no.3 (2020): 275 - 281. 10.14235/bas.galenos.2019.3491
MLA Acikgoz Eda,Güler Günnur,Öktem Gülperi Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. Bezmiâlem Science, vol.8, no.3, 2020, ss.275 - 281. 10.14235/bas.galenos.2019.3491
AMA Acikgoz E,Güler G,Öktem G Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. Bezmiâlem Science. 2020; 8(3): 275 - 281. 10.14235/bas.galenos.2019.3491
Vancouver Acikgoz E,Güler G,Öktem G Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells. Bezmiâlem Science. 2020; 8(3): 275 - 281. 10.14235/bas.galenos.2019.3491
IEEE Acikgoz E,Güler G,Öktem G "Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells." Bezmiâlem Science, 8, ss.275 - 281, 2020. 10.14235/bas.galenos.2019.3491
ISNAD Acikgoz, Eda vd. "Effect of Flavopiridol on Cell Cycle, Apoptosis and Biomolecule Structure Changes in Breast Cancer Stem Cells". Bezmiâlem Science 8/3 (2020), 275-281. https://doi.org/10.14235/bas.galenos.2019.3491