Yıl: 2020 Cilt: 9 Sayı: 2 Sayfa Aralığı: 697 - 702 Metin Dili: İngilizce İndeks Tarihi: 19-11-2020

Circularly Polarized Light on Graphene with Trigonal Warping

Öz:
In this article, we theoretically investigate the electronic band structure of monolayer graphene in the presence oftrigonal warping and photo-induced effects. The total Hamiltonian of the system has been written and the opticalabsorption of circularly polarized light for the high frequency regime have been modelled by the Haldaneinteraction. The relation between trigonal warp aspects and optical absorption of circularly polarized light has beenoverviewed through the model. Additionally, theoretically analyzed the versatile electronic properties of trigonalwarped-graphene under circularly polarized light. We have concluded that photo-induced effect which inducedcircularly polarized light leads to the opening of energy gap between valance and conduction bands while raiseselectron-hole asymmetry in the system.
Anahtar Kelime:

Üçgensel Eğrilikli Grafende Dairesel Polarize Işık

Öz:
Bu makalede tek tabakalı grafenin elektronik bant yapısını üçgensel eğrilik ve foto-kaynaklı etkiler varlığında teorik olarak araştırdık. Sistemin toplam Hamiltoniyeni yazılmış ve yüksek frekans rejimi için dairesel polarize ışığın optik absorpsiyonu Haldane etkileşimi ile modellenmiştir. Üçgensel eğrilik bakış açısı ile dairesel polarize ışığın optik absorpsiyonu arasındaki ilişki model üzerinden genel olarak incelenmiştir. Ayrıca, dairesel polarize ışık altındaki üçgensel eğrilikli grafenin çok yönlü elektronik özelliklerini teorik analiz edildi. Dairesel polarize ışığı indükleyen foto-kaynaklı etkinin, sistemde elektron boşluk asimetrisi üretirken, valance ve iletken bantlar arasında enerji boşluğunun açılmasına yol açtığı sonucuna varıldı.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Wallace P.R. 1947. The Band Theory of Graphite. Phys. Rev., 71: 622.
  • [2] Semenof G.W. 1984. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Phys. Rev. Lett., 53: 2449.
  • [3] Geim A.K., Novoselov K.S. 2007. The rise of graphene. Nat. Mater., 6: 183.
  • [4] Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. 2009. The electronic properties of graphene. Rev. Mod. Phys., 81: 109.
  • [5] Abergel D., Berashevich J., Ziegler Z., Chakraborty T. 2010. Properties of graphene: a theoretical perspective. Adv. Phys., 59 (4): 261-482.
  • [6] Zhang Y., Tan Y.-W., Stormer H.L., Kim P. 2005. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438: 201.
  • [7] CsertiJ., Csord´as A., D´avid G. 2007. Role of the Trigonal Warping on the Minimal Conductivity of Bilayer Graphene. Phys. Rev. Lett., 99: 066802.
  • [8] Moghaddam A.G., Zareyan M. 2009. Anisotropic minimal conductivity of graphene bilayers. Phys. Rev. B, 79: 073401.
  • [9] Koshino M., Ando T. 2006. Transport in bilayer graphene: Calculations within a self-consistent Born approximation. Phys. Rev. B, 73: 245403.
  • [10] Cserti J. 2007. Minimal longitudinal dc conductivity of perfect bilayer graphene. Phys. Rev. B, 75: 033405.
  • [11] Peres N.M.R. 2010. Colloquium: The transport properties of graphene: An introduction. Rev. Mod. Phys., 82: 2673.
  • [12] Das Sarma S., Adam S., Hwang E.H., Rossi E. 2011. Electronic transport in two-dimensional graphene. Rev. Mod. Phys., 83: 407.
  • [13] Haldane F.D.M. 1988. Model for a Quantum Hall Effect without Landau Levels: CondensedMatter Realization of the "Parity Anomaly". Phys. Rev. Lett., 61: 2015.
  • [14] Ryu S., Mudry C., Hou C-Y, Chamon C. 2009. Masses in graphenelike two-dimensional electronic systems: Topological defects in order parameters and their fractional exchange statistics. Phys. Rev. B, 105: 205319.
  • [15] Ezawa M. 2015. Photo-Induced Topological Superconductor in Silicene, Germanene, and Stanene. J. Supercond. Nov. Magn., 28: 1249.
  • [16] Novoselov K.S., Jiang Z., Zhang Y., Morozov S.V., Stormer H.L., Zeitler U., Maan J.C., Boebinger G.S., Kim P., Geim A.K. 2007. Room-temperature quantum Hall effect in graphene. Science, 315: 1379.
  • [17] Ezawa M. 2013. Single Dirac-cone state and quantum Hall effects in a honeycomb structure. EPLA., 104: 27006.
  • [18] Kitagawa T., Oka T., Brataas A., Fu L.,. Demler E. 2011. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B, 84: 235108.
  • [19] Ajiki H., Ando T. 1996. Energy Bands of Carbon Nanotubes in Magnetic Fields. J. Phys. Soc. Jpn., 65: 1255.
  • [20] Akimoto K., Ando T. 2004. Effects of Trigonal Warping on Perfect Channel in Metallic Carbon Nanotubes. J. Phys. Soc. Jpn., 73: 2194.
  • [21] Fathi D. 2011. Review of Electronic Band Structure of Graphene and Carbon Nanotubes Using Tight Binding. Hindawi Publishing Corporation Journal of Nanotechnology, Article ID 471241, 6 p.
  • [22] Zhou X., Xu Y., Jin G. 2015. Anomalous thermomagnetic effects in an epitaxial and irradiated graphene monolayer. Phys. Rev. B, 92: 235436.
  • [23] Tahir M., Zhang Q.Y., Schwingenschlögl U. 2016. Floquet edge states in germanene nanoribbonsi. Sci Rep. 6: 31821.
  • [24] Ezawa M. 2013. Photoinduced topological phase transition and a single Dirac-cone state in silicene. Phys Rev Lett., 110 (2): 026603.
  • [25] Liu C.-C., Jiang H., Yao Y. 2011. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B, 84: 195430.
  • [26] Drummond N.D., Zólyomi V., Fal’ko V.I. 2012. Electrically tunable band gap in silicene. Phys. Rev. B, 85: 075423.
  • [27] McCann E., Fal'ko V.I. 2006. Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer. Phys. Rev. Lett., 96: 086805.
  • [28] McCann E., Koshino M. 2009. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B, 80: 165409.
  • [29] McCann E., Smirnov D., Bao W., Jing L., Velasco J., Lee Y., Liu G., Tran D., Standley B., Aykol M., Cronin S. B., Koshino M., Bockrath M., Lau C. N. 2011. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys., 7: 948.
APA Akay D (2020). Circularly Polarized Light on Graphene with Trigonal Warping. , 697 - 702.
Chicago Akay Defne Circularly Polarized Light on Graphene with Trigonal Warping. (2020): 697 - 702.
MLA Akay Defne Circularly Polarized Light on Graphene with Trigonal Warping. , 2020, ss.697 - 702.
AMA Akay D Circularly Polarized Light on Graphene with Trigonal Warping. . 2020; 697 - 702.
Vancouver Akay D Circularly Polarized Light on Graphene with Trigonal Warping. . 2020; 697 - 702.
IEEE Akay D "Circularly Polarized Light on Graphene with Trigonal Warping." , ss.697 - 702, 2020.
ISNAD Akay, Defne. "Circularly Polarized Light on Graphene with Trigonal Warping". (2020), 697-702.
APA Akay D (2020). Circularly Polarized Light on Graphene with Trigonal Warping. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(2), 697 - 702.
Chicago Akay Defne Circularly Polarized Light on Graphene with Trigonal Warping. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9, no.2 (2020): 697 - 702.
MLA Akay Defne Circularly Polarized Light on Graphene with Trigonal Warping. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.9, no.2, 2020, ss.697 - 702.
AMA Akay D Circularly Polarized Light on Graphene with Trigonal Warping. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(2): 697 - 702.
Vancouver Akay D Circularly Polarized Light on Graphene with Trigonal Warping. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(2): 697 - 702.
IEEE Akay D "Circularly Polarized Light on Graphene with Trigonal Warping." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9, ss.697 - 702, 2020.
ISNAD Akay, Defne. "Circularly Polarized Light on Graphene with Trigonal Warping". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9/2 (2020), 697-702.