Yıl: 2020 Cilt: 40 Sayı: 3 Sayfa Aralığı: 375 - 381 Metin Dili: Türkçe DOI: 10.5336/medsci.2020-74818 İndeks Tarihi: 20-11-2020

ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis

Öz:
Tüberküloz (TB) ile mücadele, günümüz global halk sağlığı önceliklerinden biridir. Mycobacterium tuberculosis (Mtb) en önemli bakteriyel patojenlerden biridir; bu patojen dünya nüfusunun neredeyse%30’unu enfekte ederek, birçok kişinin ölümüne neden olmaktadır.Mtb basilleri büyüme, sağkalım ve virülansta, membranlardan bakteriyüzeyine ve çevreye kompleks hücre duvarı boyunca bir dizi proteinefekti ihraç eden eşsiz salgı sistemleri kullanırlar. Patojenik Mtb’nin 5paralog ESX salgılama sistemi vardır; bunlar ESX-1 ile ESX-5 arasındadır. ESX salgılama sistemleri diğer birçok aktinobakteriyel, grampozitif bakteride bulunur ve son zamanlarda tip VII salgılama sistemleri[type VII secrection system (T7SS)] olarak adlandırılmaları önerilmiştir. T7SS tarafından, konakçı hücrelere salgılanan proteinler Mtb ileilişkili virülansta aracı bir rol oynar; bu durum, bu sistemi gelecektekiilaç ve aşı gelişimi için aday yapar. Bununla birlikte, T7SS’ye dâhilolan bileşenlerin birçoğu tanımlanmış olsa da hem iç hem de dış mikobakteriyel zarlar boyunca translokasyon mekanizması büyük ölçüdeaçıklanamamıştır. Yapılan tüm çalışmalar incelendiğinde, ESX sistemlerinin mikobakterilerde protein sekresyonunun lokalizasyonunuyöneten, daha önce görülmemiş mekanizmalar oldukları öngörülmektedir. T7SS’nin temel rolünü anlamak, acilen ihtiyaç duyulan yeni potansiyel terapötik hedefleri ve tüberkülozu tedavi etmek için yenimüdahale stratejileri geliştirilmesini sağlayabilir.
Anahtar Kelime:

ESX-1, ESX-3 and ESX-5 Secretory Systems and Mycobacterium Tuberculosis

Öz:
Combating tuberculosis (TB) is one of the current global public health priorities. Mycobacterium tuberculosis (Mtb) is one of the most important bacterial pathogens; this pathogen infects almost 30% of the world’s population, causing the death of many. Mtb bacilli use unique secretion systems that export a range of protein effects across the complex cell wall, from membranes to the bacterial surface and the environment, in growth, survival and virulence. The pathogenic Mtb has 5 paralogous ESX secretion systems, which range from ESX1 to ESX-5. ESX secretory systems are found in many other actinobacteria, gram-positive bacteria and have recently been referred to as type VII secretion systems (T7SS). Proteins secreted by T7SS into host cells play a mediating role in Mtb-related virulence, making this system a candidate for future drug and vaccine development.. However, although many of the components included in T7SS have been identified, the mechanism of translocation across both internal and external mycobacterial membranes has not been largely explained. When all studies are examined, it is seen that ESX systems are unprecedented mechanisms that govern the localization of protein secretion in mycobacteria. Understanding the basic role of T7SS can lead to the development of new potential therapeutic targets and new intervention strategies to treat tuberculosis.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. WHO. Global Tuberculosis Report 2019. p.297. [Link]
  • 2. Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36(3): 514-532. [Crossref] [PubMed] [PMC]
  • 3. Sani M, Houben ENG, Geurtsen J, Pierson J, de Punder K, van Zon M, et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog. 2010;6(3); e1000794. [Crossref] [PubMed] [PMC]
  • 4. Abdallah AM, van Pittius NCG, Champion PAD, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, et al. Type VII secretion--mycobacteria show the way. Nat Rev Microbiol. 2007;5(11):883-91. [Crossref] [PubMed]
  • 5. Houben ENG, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, et al. Composition of the type VII secretion system membrane complex. Mol Microbiol. 2012;86(2):472-84. [Crossref] [PubMed]
  • 6. Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A. 2003;100(22):13001-6. [Crossref] [PubMed] [PMC]
  • 7. Ates LS, Ummels R, Commandeur S, Van de Weerd R, Sparrius M, Weerdenburg E, Alber M, et al. Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLOS Genet. 2015;11:1005190. [Crossref] [PubMed] [PMC]
  • 8. Stoop EJM, Bitter W, van der Sar AM. Tuberculosis bacilli rely on a type VII army for pathogenicity. Trends Microbiol. 2012;20(10): 477-84. [Crossref] [PubMed]
  • 9. Van Pittius NCG, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD. The ESAT6 gene cluster of mycobacterium tuberculosis and other high G+C gram-positive bacteria. Genom Biol. 2001;2(10):RESEARCH0044. [Crossref] [PubMed] [PMC]
  • 10. Jagielski T, Ignatowska H, Bakuła Z, Dziewit Ł, Napiórkowska A, Augustynowicz-Kopeć E, et al. Screening for streptomycin resistanceconferring mutations in mycobacterium tuberculosis clinical isolates from Poland. PLoS One. 2014;9(6):e100078. [Crossref] [PubMed] [PMC]
  • 11. Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3): 354-73. [Crossref] [PubMed]
  • 12. WHO. Global Tuberculosis Report, 2017. p.147. [Link]
  • 13. Chapman HJ, Lauzardo M. Advances in diagnosis and treatment of latent tuberculosis infection. J Am Board Fam Med. 2014;27(5): 704-12. [Crossref] PubMed]
  • 14. Loudon RG, Bumgarner LR, Lacy J, Coffman GK. Aerial transmission of mycobacteria. Am Rev Respir Dis. 1969;100(2):165-71.
  • 15. Stead WW. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection? Am Rev Respir Dis. 1967;95(5):729-45.
  • 16. Merrell DS, Falkow S. Frontal and stealth attack strategies in microbial pathogenesis. Nature. 2004;430(6996):250-6. [Crossref] [PubMed]
  • 17. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163(9):1009-21. [Crossref] [PubMed]
  • 18. Jackson M. The mycobacterial cell envelopelipids. Cold Spring Harb Perspect Med. 2014;4(10):a021105. [Crossref] [PubMed] [PMC]
  • 19. Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, Etienne G, et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep. 2017;7(1):12807. [Crossref] [PubMed] [PMC]
  • 20. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, et al. Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 2015;13(6):343-59. [Crossref] [PubMed]
  • 21. Orgeur M, Brosch R. Evolution of virulence in the mycobacterium tuberculosis complex. Curr Opin Microbiol. 2018;41:68-75. [Crossref] [PubMed]
  • 22. Abdallah AM, Bestebroer J, Savage NDL, Punder K, van Zon M, Wilson L, et al. Mikobakteriyel sekresyon sistemleri ESX-1 ve ESX-5, konakçı hücre ölümü ve inflamatuar aktivasyonda farklı roller oynar. J Immunol. 2011;187:4744-53. [Crossref] [PubMed]
  • 23. Bitter W, Houben ENG, Bottai D, Brodin P, Brown EJ, Cox JS, et al. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog. 2009;5(10):e1000507. [Crossref] [PubMed] [PMC]
  • 24. Pallen MJ. The ESAT-6/WXG100 superfamily - - and a new gram-positive secretion system? Trends Microbiol. 2002;10(5):209-12. [Crossref]
  • 25. Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT6-like system that is required for the pathogenesis of staphylococcus aureus infections. Proc Natl Acad Sci U S A. 2005;102(4):1169-1174. [Crossref] [PubMed] [PMC]
  • 26. Ummels R, Abdallah AM, Kuiper V, Aâjoud A, Sparrius M, Naeem R, et al. Identification of a novel conjugative plasmid in mycobacteria that requires both type IV and type VII secretion. mBio. 2014;5(5):e01744-14. [Crossref] [PubMed] [PMC]
  • 27. Newton-Foot M, Warren RM, Sampson SL, van Helden PD, van Pittius NCG. The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems. BMC Evol Biol. 2016;16:62. [Crossref] [PubMed] [PMC]
  • 28. Simeone R, Sayes F, Song O, Gröschel MI, Brodin P, Brosch R, et al. Cytosolic access of mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog. 2015;11(2): e1004650. [Crossref] [PubMed] [PMC]
  • 29. Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilchèze C, Jones CM, et al. Separable roles for mycobacterium tuberculosis ESX3 effectors in iron acquisition and virulence. Proc Natl Acad Sci U S A. 2016;113(3):E348-57. [Crossref] [PubMed] [PMC]
  • 30. Van Winden VJC, Damen MPM, Ummels R, Bitter W, Houben ENG. Protease domain and transmembrane domain of the type VII secretion mycosin protease determine system-specific functioning in mycobacteria. J Biol Chem. 2019; 294(13):4806-14. [Crossref] [PubMed] [PMC]
  • 31. Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, et al. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A. 2005;102(30):10676-81. [Crossref] [PubMed] [PMC]
  • 32. Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, et al. Global analysis of the mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol. 2007;189(3):730- 40. [Crossref] [PubMed] [PMC]
  • 33. Carlsson F, Joshi SA, Rangell L, Brown EJ. Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog. 2009; 5(1):e1000285. [Crossref] [PubMed] [PMC]
  • 34. Garces K, Atmakuri K, Chase MR, Woodworth BS, Krastins B, Rothchild AC, et al. EspA acts as a critical mediator of ESX1- dependent virulence in mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog. 2010;6(6): e1000957. [Crossref] [PubMed] [PMC]
  • 35. Majlessi L, Brodin P, Brosch R, Rojas MJ, Khun H, Huerre M, et al. Influence of ESAT-6 secretion system 1 (RD1) of mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J. Immunol. 2005;174(6):3570-9. [Crossref] [PubMed]
  • 36. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss RD1 contributed to the attenuation of the live tuberculosis vaccines mycobacterium bovis BCG and mycobacterium microti. Mol Microbiol. 2002;46:709-17. [Crossref] [PubMed]
  • 37. Houben D, Demangel C, Van Ingen J, Perez J, Baldeón L, Abdallah AM, et al. ESX-1 mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol. 2012;14(8):1287-98. [Crossref] [PubMed]
  • 38. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, et al. Phagosomal rupture by mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 2012;8(2):1002507. [Crossref] [PubMed] [PMC]
  • 39. Van der Woude AD, Mahendran KR, Ummels R, Piersma SR, Pham TV, Jiménez CR, et al. Differential detergent extraction of mycobacterium marinum cell envelope proteins identifies an extensively modified threonine-rich outer membrane protein with channel activity. J Bacteriol. 2013;195(9):2050-9. [Crossref] [PubMed] [PMC]
  • 40. Coburn B, Sekirov I, Finlay BB. Type III secretion systems and disease. Clin Microbiol Rev. 2007;20(4):535-59. [Crossref] [PubMed] [PMC]
  • 41. Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 2006;9(2):207-17. [Crossref] [PubMed]
  • 42. Judd PK, Kumar RB, Das A. Spatial location and requirements for the assembly of the agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci U S A. 2005;102(32):11498-503. [Crossref] [PubMed] [PMC]
  • 43. Jaumouillé V, Francetic O, Sansonetti PJ, Van Nhieu GT. Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in shigella. EMBO J. 2008;27(2):447-57. [Crossref] [PubMed] [PMC]
  • 44. Pandey R, Russo R, Ghanny S, Huang X, Helmann J, Rodriguez GM. MntR(Rv2788): a transcriptional regulator that controls manganese homeostasis in mycobacterium tuberculosis. Mol Microbiol. 2015;98(6):1168-83. [Crossref] [PubMed] [PMC]
  • 45. Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY, Siddiqi N, et al. Mycobacterial Esx-3 is required for mycobactinmediated iron acquisition. Proc Natl Acad U S A. 2009;106(44):18792-7. [Crossref] [PubMed] [PMC]
  • 46. Serafini A, Boldrin F, Palù G, Manganelli R. Characterization of a mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol. 2009;191 (20):6340-4. [Crossref] [PubMed] [PMC]
  • 47. Serafini A, Pisu D, Palù G, Rodriguez GM, Manganelli R. The ESX-3 secretion system is necessary for iron and zinc homeostasis in mycobacterium tuberculosis. PLoS One. 2013;14(8):e78351. [Crossref] [PubMed] [PMC]
  • 48. Siegrist MS, Steigedal M, Ahmad R, Mehra A, Dragset MS, Schuster BM, et al. Mycobacterial Esx-3 requires multiple components for iron acquisition. mBio. 2014;5(3)e01073-14. [Crossref] [PubMed] [PMC]
  • 49. Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PDR, et al. Insights from the complete genome sequence of mycobacterium marinum on the evolution of mycobacterium tuberculosis. Genome Res. 2008;18(5):729-41. [Crossref] [PubMed] [PMC]
  • 50. Sassetti CM, Rubin EJ. Enfeksiyon sırasında mikobakteriyel sağkalım için genetik gereksinimler Proc. Natl. Acad. Sci. ABD. 2003; 100:12989-94. [Crossref] [PubMed] [PMC]
  • 51. Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, et al. A recombinant mycobacterium smegmatis induces potent bactericidal immunity against mycobacterium tuberculosis. Nat Med. 2011;17(10):1261- 8. [Crossref] [PubMed] [PMC]
  • 52. Ilghari D, Lightbody KL, Veverka V, Waters LC, Muskett FW, Renshaw PS, et al. Solution structure of the mycobacterium tuberculosis EsxG•EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. J Biol Chem. 2011;286(34):29993-30002. [Crossref] [PubMed] [PMC]
  • 53. Houben EN, Korotkov KV, Bitter W. Take fivetype VII secretion systems of mycobacteria. Biochim Biophys Acta. 2014;843(8):1707-16. [Crossref] [PubMed]
  • 54. Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, Cox JS. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe. 2010;7(3):210-20. [Crossref] [PubMed] [PMC]
  • 55. Griffin JE, Gawronski JD, DeJesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011;7(9): e1002251. [Crossref] [PubMed] [PMC]
APA Tollu G (2020). ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. , 375 - 381. 10.5336/medsci.2020-74818
Chicago Tollu Gülşah ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. (2020): 375 - 381. 10.5336/medsci.2020-74818
MLA Tollu Gülşah ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. , 2020, ss.375 - 381. 10.5336/medsci.2020-74818
AMA Tollu G ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. . 2020; 375 - 381. 10.5336/medsci.2020-74818
Vancouver Tollu G ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. . 2020; 375 - 381. 10.5336/medsci.2020-74818
IEEE Tollu G "ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis." , ss.375 - 381, 2020. 10.5336/medsci.2020-74818
ISNAD Tollu, Gülşah. "ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis". (2020), 375-381. https://doi.org/10.5336/medsci.2020-74818
APA Tollu G (2020). ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. Türkiye Klinikleri Tıp Bilimleri Dergisi, 40(3), 375 - 381. 10.5336/medsci.2020-74818
Chicago Tollu Gülşah ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. Türkiye Klinikleri Tıp Bilimleri Dergisi 40, no.3 (2020): 375 - 381. 10.5336/medsci.2020-74818
MLA Tollu Gülşah ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. Türkiye Klinikleri Tıp Bilimleri Dergisi, vol.40, no.3, 2020, ss.375 - 381. 10.5336/medsci.2020-74818
AMA Tollu G ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. Türkiye Klinikleri Tıp Bilimleri Dergisi. 2020; 40(3): 375 - 381. 10.5336/medsci.2020-74818
Vancouver Tollu G ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis. Türkiye Klinikleri Tıp Bilimleri Dergisi. 2020; 40(3): 375 - 381. 10.5336/medsci.2020-74818
IEEE Tollu G "ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis." Türkiye Klinikleri Tıp Bilimleri Dergisi, 40, ss.375 - 381, 2020. 10.5336/medsci.2020-74818
ISNAD Tollu, Gülşah. "ESX-1, ESX-3 ve ESX-5 Salgı Sistemleri ve Mycobacterium Tuberculosis". Türkiye Klinikleri Tıp Bilimleri Dergisi 40/3 (2020), 375-381. https://doi.org/10.5336/medsci.2020-74818