Yıl: 2020 Cilt: 9 Sayı: 1 Sayfa Aralığı: 390 - 401 Metin Dili: İngilizce İndeks Tarihi: 21-11-2020

New Experimental Approaches to Sand Hardening by Microbial Biocalcification

Öz:
In recent years, together with the increasing population, there has been a rapid growth in the construction sector inorder to meet housing needs. This growth led to the rapid development of the cement industry. In the process ofincreasing industrialization, biotechnological processes are becoming more important. The most importantalternative to the cement industry is the microbial bio-calcification process. In this process, cement-like structuresare produced by bacteria at room temperature conditions. Microbial bio-calcification processes have attracted theinterest of researchers especially in the process of self-healing in recent years as an alternative and nature-friendlysolution to the cement production processes that are being produced at high temperatures. This study is anoptimization of an innovative, environmentally friendly and biotechnological method for the construction andcement industry. Different production surfaces was used for sand hardening with Sporosarcina pasteurii such asagar plates, filter paper and polyurethane support materials. The effect of different CaCl2 concentrations (25 mM,50 mM and 100 mM) and sand thickness (1 mm, 5 mm and 10 mm) was also tested. CaCO3 was determined byFTIR and measured by chemical analysis. In addition, the hardness and integrity of the samples were observed.Agar and polyurethane support materials were found to be more effective in terms of support material for sandhardening. Increased thickness reduced the hardness and 50 mM CaCl2 concentration was found to be optimumfor these types of processes. This study shows the effects of sand hardness on innovative, environmentally friendlyand biotechnological approach optimization.
Anahtar Kelime:

Mikrobiyal Biyokalsifikasyon ile Kumun Sertleştirilmesinde Yeni Deneysel Yaklaşımlar

Öz:
Son yıllarda nüfustaki artışla birlikte barınma ihtiyacının giderilmesi için inşaat sektöründe hızlı bir büyüme olmuştur. Bu büyüme beraberinde çimento endüstrisinde hızlı gelişimi getirmiştir. Artan endüstrileşme sürecinde biyoteknolojik süreçler her geçen gün daha fazla önem kazanmaktadır. Çimento endüstrisinin en önemli alternatifi mikrobiyal biyokalsifikasyon prosesleridir. Bu proseste çimento benzeri yapılar oda sıcaklığı koşullarında bakteriler tarafından üretilmektedirler. Mikrobiyal biyo-kalsifikasyon prosesleri yüksek sıcaklıklarda üretimi gerçekleşen çimento proseslerine alternatif ve doğa dostu bir çözüm olarak son yıllarda araştırmacıların ilgisini özellikle kendi kendine iyileşme sürecinde çekmiştir. Bu çalışma kapsamında mikrobiyal biyo-kalsifikasyon işlemiyle kum sertleşmesinde farklı üretim yüzeyleri karşılaştırılmıştır. Agar, filtre kağıdı ve poliüretan destek malzemeleri kullanılarak Sporosarcina pasteurii ile kum sertleştirmesi proses verimleri incelenmiştir. Farklı CaCl2 konsantrasyonlarının (25 mM, 50 mM ve 100 mM) ve kum kalınlığının (1 mm, 5 mm ve 10 mm) etkisi de test edilmiştir. CaCO3 varlığı FTIR testleri ile belirlenmiş ve konsantrasyon karşılaştırmaları kimyasal yöntemlerle yapılmıştır. Ek olarak, numunelerin sertliği ve bütünlüğü de gözlenerek en uygun üretim yüzeyi karşılaştırmalı olarak incelenmiştir. Sonuç olarak agar ve poliüretan destek malzemelerinin, kum sertleşmesinde destek malzemesi olarak daha etkili olduğu bulunmuştur. Artan kum kalınlığının sertliği azalttığı ve 50 mM CaCl2 konsantrasyonunun optimum miktar olduğu belirlenmiştir. Bu çalışma yapı sektörü ve çimento sektörü açısından yenilikçi, çevre dostu ve biyoteknolojik bir yöntemin optimizasyonu niteliğindedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Alam I., Naseer A., Shah A.A. 2015. Economical Stabilization of Clay for Earth Buildings Construction in Rainy and Flood Prone Areas. Construction and Building Materials, 77: 154-159.
  • [2] Türkiye Cumhuriyeti Ekonomi Bakanlığı İhracat Genel Müdürlüğü Kimya Ürünleri ve Özel İhracat Daire Başkanlığı, Çimento Sektör Raporu, Ankara, Turkey, 2016. (https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/Cimento.pdf) (Accessed: 15.03.2019).
  • [3] Wiktor V., Jonkers H.M. 2011. Quantification of Crack-healing in Novel Bacteria-based Selfhealing Concrete. Cement and Concrete Composites, 33 (7): 763-770.
  • [4] Türkkan A. 2015. Çimento Fabrikalarının Sağlık Etkileri, Türk Tabipler Birliği Bursa Tabip Odası, 1-36s. Bursa, Turkey. (https://www.researchgate.net/profile/Alpaslan_Turkkan/publication/312627595_Cimento_Fabr ikalarinin_Saglik_Etkileri/links/58872dfe4585150dde4c8903/Cimento-Fabrikalarinin-SaglikEtkileri.pdf) (Accessed: 27.02.2019).
  • [5] Minke G. 2012. Building with Earth Design and Technology of a Sustainable Architecture, Birkhauser, 196 s. Basel. https://books.google.com.tr/books?hl=tr&lr=&id=DUbVAAAAQBAJ&oi=fnd&pg=PA7&dq= G.+Minke,+Building+With+Earth+Design+and+Technology+of+a+Sustainable+Architecture.+ Birkhauser+Basel:+Walter+de+Gruyter,+2012.&ots=CCOLwA2OUJ&sig=lBEakyGV2h76naf EFkNXzDDPxoA&redir_esc=y#v=onepage&q&f=false (Accessed: 27.02.2020).
  • [6] Fjørtoft I., Sageie J. 2000. The Natural Environment as a Playground for Children: Landscape Description and Analyses of a Natural Playscape. Landscape and Urban Planning, 48 (1-2): 83- 97.
  • [7] Taya M. 2003. Bio-inspired Design of Intelligent Materials, Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), 50 (51): 54-66.
  • [8] Siddique R., Chahal N.K. 2011. Effect of Ureolytic Bacteria on Concrete Properties. Construction and Building Materials, 25 (10): 3791-3801.
  • [9] Olivera-Severo D., Wassermann G., Carlini C. 2006. Bacillus pasteurii Urease Shares with Plant Ureases the Ability to Induce Aggregation of Blood Platelets. Archives of Biochemistry and Biophysics, 452 (2): 149–155.
  • [10] Stocks-Fischer S., Galinat J.K., Bang S.S. 1999. Microbiological Precipitation of CaCO3. Soil Biology and Biochemistry, 31 (11): 1563-1571.
  • [11] Yoon J.H., Lee K.C., Weiss N., Kho Y.H., Kang K.H., Park Y.H. 2001. Sporosarcina aquimarina sp. nov., a Bacterium Isolated from Seawater in Korea, and Transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the Genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and Emended Description of the genus Sporosarcina. International Journal of Systematic and Evolutionary Microbiology, 51 (3): 1079-1086.
  • [12] Wiley W.R., Stokes J.L. 1962. Requirement of an Alkaline pH and Ammonia for Substrate Oxidation by Bacillus pasteurii. Journal of Bacteriology, 84 (4): 730-734.
  • [13] Chunxiang Q., Jianyun W., Ruixing R., Liang C. 2009. Corrosion Protection of Cement-based Building Materials by Surface Deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering: C, 29 (4): 1273-1280.
  • [14] Wang J., Tittelboom K.V., Belie N.D., Verstraete W. 2012. Use of Silica Gel or Polyurethane Immobilized Bacteria for Self-healing Concrete. Construction and Building Materials, 26 (1): 532-540.
  • [15] Jonkers H.M., Schlangen E. 2007. Crack Repair by Concrete-immobilized Bacteria. In Proceedings of the First International Conference on Self Healing Materials, 18-20 April, Noordwijk aan Zee, The Netherlands. (http://extras.springer.com/2007/978-1-4020-6250- 6/documents/9.pdf) (Accessed: 27.02.2019).
  • [16] Eryürük K., Yang S., Suzuki D., Sakaguchi X., Akatsuka T., Tsuchiya T., Katayama A. 2015. Reducing Hydraulic Conductivity of Porous Media Using CaCO3 Precipitation Induced by Sporosarcina pasteurii. Journal of Bioscience and Bioengineering, 119 (3): 331-336.
  • [17] NIST Chemistry WebBook SRD 69 2019. Calcium carbonate (precipitated) (https://webbook.nist.gov/cgi/cbook.cgi?ID=C471341&Mask=80) (Accessed: 01.03.2019).
  • [18] Sarmast M., Farpoor M.H., Sarcheshmehpoor M., Eghbal M.K. 2014. Micromorphological and Biocalcification Effects of Sporosarcina pasteurii and Sporosarcina ureae in Sandy Soil Columns. Journal of Agricultural Science and Technology, 16 (3): 681-693.
  • [19] Bhaduri S., Debnath N., Mitra S., Liu Y., Kumar A. 2016. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii. Journal of Visualized Experiments, 110: 54- 63.
  • [20] Okwadha G.D., Li J. 2010. Optimum Conditions for Microbial Carbonate Precipitation. Chemosphere, 81 (9): 1143-1148.
  • [21] Achal V., Mukherjee A., Reddy M.S. 2010. Microbial Concrete: Way to Enhance the Durability of Building Structures, Journal of Materials in Civil Engineering, 23 (6): 730-734.
APA Aric A, deniz i, Keskin Gundogdu T (2020). New Experimental Approaches to Sand Hardening by Microbial Biocalcification. , 390 - 401.
Chicago Aric Alpcan,deniz irem,Keskin Gundogdu Tugba New Experimental Approaches to Sand Hardening by Microbial Biocalcification. (2020): 390 - 401.
MLA Aric Alpcan,deniz irem,Keskin Gundogdu Tugba New Experimental Approaches to Sand Hardening by Microbial Biocalcification. , 2020, ss.390 - 401.
AMA Aric A,deniz i,Keskin Gundogdu T New Experimental Approaches to Sand Hardening by Microbial Biocalcification. . 2020; 390 - 401.
Vancouver Aric A,deniz i,Keskin Gundogdu T New Experimental Approaches to Sand Hardening by Microbial Biocalcification. . 2020; 390 - 401.
IEEE Aric A,deniz i,Keskin Gundogdu T "New Experimental Approaches to Sand Hardening by Microbial Biocalcification." , ss.390 - 401, 2020.
ISNAD Aric, Alpcan vd. "New Experimental Approaches to Sand Hardening by Microbial Biocalcification". (2020), 390-401.
APA Aric A, deniz i, Keskin Gundogdu T (2020). New Experimental Approaches to Sand Hardening by Microbial Biocalcification. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(1), 390 - 401.
Chicago Aric Alpcan,deniz irem,Keskin Gundogdu Tugba New Experimental Approaches to Sand Hardening by Microbial Biocalcification. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9, no.1 (2020): 390 - 401.
MLA Aric Alpcan,deniz irem,Keskin Gundogdu Tugba New Experimental Approaches to Sand Hardening by Microbial Biocalcification. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.9, no.1, 2020, ss.390 - 401.
AMA Aric A,deniz i,Keskin Gundogdu T New Experimental Approaches to Sand Hardening by Microbial Biocalcification. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(1): 390 - 401.
Vancouver Aric A,deniz i,Keskin Gundogdu T New Experimental Approaches to Sand Hardening by Microbial Biocalcification. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(1): 390 - 401.
IEEE Aric A,deniz i,Keskin Gundogdu T "New Experimental Approaches to Sand Hardening by Microbial Biocalcification." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9, ss.390 - 401, 2020.
ISNAD Aric, Alpcan vd. "New Experimental Approaches to Sand Hardening by Microbial Biocalcification". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9/1 (2020), 390-401.