(Ankara Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, Ankara, Türkiye)
(Ankara Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, Ankara, Türkiye)
(Ankara Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, Ankara, Türkiye)
(Kastamonu Üniversitesi, Fen Edebiyat Fakültesi, Biyoloji Bölümü, Kastamonu, Türkiye)
Yıl: 2020Cilt: 8Sayı: 1ISSN: 2148-127X / 2148-127XSayfa Aralığı: 69 - 80İngilizce

23 0
Anti-Biofilm and Antimicrobial Activities of Five Edible and Medicinal Macrofungi Samples on Some Biofilm Producing Multi Drug Resistant Enterococcus Strains
It is commonly well-known that biofilms are the predominant mode of bacterial growth, reflected in the clinic observations, where approximately 80% of all bacterial infections are related to biofilms. Bacteria in biofilms are well protected against environmental stresses, antibiotics, disinfectants and the host’s immune system and are usually extremely difficult to eradicate. Due to common problems caused by biofilms, alternative anti-biofilm strategies must be developed. Enterococcus strains are able to form complex surface-associated communities (biofilms), which contribute to its resistance and persistence in both host and non-host environments, and are especially important in food processing and clinical environments. Enterococcus biofilms showed increased antimicrobial resistance to the most of antibiotics as compared to the planktonic bacteria, which make them difficult to combat. There is an increasing evidence that biofilms are often associated with infectious diseases. Novel anti-biofilm strategies must be designed to include natural bio products instead of common antibiotics. Mushrooms are a nutritionally functional foods and a source of pharmaceuticals having functions such as antitumor, immunomodulating, antioxidant, cardiovascular, anti-hypercholesterolemia, antiviral, antibacterial, anti-parasitic, antifungal, detoxification, hepatoprotective, and antidiabetic. In addition, they have a notable activity against biofilms. In this study, the antimicrobial and anti-biofilm activities of some medicinal and edible mushrooms, namely Morchella angusticeps Peck, Ganoderma lucidum (Curtis) P. Karst., Cerioporus squamosus (Huds.) Quél., Trametes versicolor (L.) Lloyd and Lentinula edodes (Berk.) Singer were screened against multi drug resistant Enterococcus strains. As a result, it was observed that these mushrooms have notable potency to develop alternative medicines to struggle infectious diseases and biofilms.
DergiAraştırma MakalesiErişime Açık
  • Altay FM. 1996. Hastanede yatan hastaların dışkı kültürlerinde Enterokok kolonizasyonu ve vanomisin direncinin araştırılması. Ankara Eğitim Hastanesi (Uzmanlık tezi), s. 1-57.
  • Altuner EM, Akata I, Canlı K. 2012b. In vitro Antimicrobial Activity Screening of Bovista nigrescens Pers. Kastamonu Üniversitesi Orman Fakültesi Dergisi. 12:90-96.
  • Altuner EM, Akata I, Canli K. 2012a. In vitro antimicrobial screening of Cerena unicolor (Bull.) murrill (Polyporaceae Fr. Ex Corda). Fresenius Environ. Bull. 21:3704-3710.
  • Altuner EM, Akata I. 2010. Antimicrobial activity of some macrofungi extracts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 14: 45-49.
  • Altuner EM, Canlı K. 2012. In vitro antimicrobial screening of Hypnum andoi AJE Sm. Kastamonu Üniversitesi Orman Fakültesi Dergisi. 12:97-101.
  • Altuner EM, Canli K, Akata I. 2014. Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. J. Pure Appl. Microbio. 8:539-545.
  • Altuner EM. 2008. Bazı karayosunu türlerinin antimikrobiyal aktivitesinin belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Ankara.
  • Bala N, Aitken EA, Fechner N, Cusack A, Steadman KJ. 2011. Evaluation of antibacterial activity of Australian basidiomycetous macrofungi using a high-throughput 96-well plate assay. Pharm. Biol. 49:492-500.
  • Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Iosi F, Arciola CR, Montanaro L, Di Rosa R, Gherardi G, Dicuonzo G, Orefici G. 2001. Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med. Microbiol. Immun. 190:113-120.
  • Balde ES, Andolfi A, Bruyère C, Cimmino A, Lamoral-Theys D, Vurro M, Damme MV, Altomare C, Mathieu V, Kiss R, Evidente A. 2010. Investigations of fungal secondary metabolites with potential anticancer activity. J. Nat. Prod. 73:969-971.
  • Bentley R. 1997. Microbial secondary metabolites play important roles in medicine; prospects for discovery of new drugs. Perspect. Biol. Med. 40:364-394.
  • Bhattacharjee MK. 2016. Development of Resistance to Antibiotics. In: Bhattacharjee MK. Chemistry of Antibiotics and Related Drugs. USA: Springer. pp: 27-48.
  • Blanchette KA, Wenke JC. 2018. Current therapies in treatment and prevention of fracture wound biofilms: why a multifaceted approach is essential for resolving persistent infections. J. Bone Jt. Infect. 3:50-67.
  • Buommino E, Scognamiglio M, Donnarumma G, Fiorentino A, D’Abrosca B. 2014. Recent advances in natural product-based anti-biofilm approaches to control infections. Mini-Rev. Med. Chem. 14:1169-1182.
  • Canli K, Akata I, Altuner EM. 2016. In vitro antimicrobial activity screening of Xylaria hypoxylon. Afr. J. Tradit. Complement. Altern. Med. 13:42-46.
  • Chou TC. 2010. Drug combination studies and their synergy quantification using the Chou-Talalay method. J. Cancer Res. 70:440-446.
  • Clinical and Laboratory Standards Institute (CLSI). 2016. Performance Standards for Antimicrobial Susceptibility Testing. 26th edition. USA: Clinical and Laboratory Standards Institute. ISBN 978-1-68440-032-4.
  • Daly SM, Sturge CR, Greenberg DE. 2017. Inhibition of bacterial growth by peptide-conjugated morpholino oligomers. In: Moulton HM and Moulton JD. Morpholino Oligomers. New York: Humana Press. pp. 115-122.
  • de Carvalho MP, Türck P, Abraham WR. 2015. Secondary metabolites control the associated bacterial communities of saprophytic basidiomycotina fungi. Microbes Environ. 30:196-198.
  • De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD. 2013. Bioactive metabolites from macrofungi: Ethnopharmacology, biological activities and chemistry. Fungal Divers. 62:1-40.
  • Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R. 2014. Fungal metabolites with anticancer activity. Nat. Prod. Rep. 31:617-627.
  • Extremina CI, Costa L, Aguiar AI, Peixe L, Fonseca AP. 2011. Optimization of processing conditions for the quantification of enterococci biofilms using microtitre-plates. J. Microbiol. Methods. 84:167-173.
  • Giaouris E, Chorianopoulos N, Nychas GJ. 2005. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica Enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J. Food Prot. 68:2149-2154.
  • Hameed A, Hussain SA, Yang J, Ijaz MU, Liu Q, Suleria HA, Song Y. 2017. Antioxidants potential of the filamentous fungi (Mucor circinelloides). Nutrients. 9:1101.
  • Handwerger S, Perlman DC, Altarac D, McAuliffe V. 1992. Concomitant high-level vancomycin and penicillin resistance in clinical isolates of enterococci. Clin. Infect. Dis. 14:655-661.
  • Handwerger S, Pucci M, Kolokathis A. 1990. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob. Agents Chemother. 34:358-360.
  • Hollenbeck BL, Rice LB. 2012. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 3:421-569.
  • Kali A. 2015. Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus aureus: a brief review. Pharmacogn. Rev. 9:29-34.
  • Kim JE, Kim HE, Hwang JK, Lee HJ, Kwon HK, Kim BI. 2008. Antibacterial characteristics of Curcuma xanthorrhiza extract on Streptococcus mutans biofilm. J. Microbiol. 46:228.
  • Lavery A, Rossney AS, Morrison D, Power A, Keane CT. 1997. Incidence and detection of multi-drug-resistant enterococci in Dublin hospitals. J. Med. Microbiol. 46:150-156.
  • Lebeaux D, Ghigo JM, Beloin C. 2014. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78:510-543.
  • Li B, Webster TJ. 2018. Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections. J. Orthop. Res. 36:22-32.
  • Losada L, Ajayi O, Frisvad JC, Yu J, Nierman WC. 2009. Effect of competition on the production and activity of secondary metabolites in Aspergillus species. Med. Mycol. 47:S88-96.
  • National Committee for Clinical Laboratory Standards (NCCLS). (2001a). Development of in vitro susceptibility testing criteria and quality control parameters. Approved guideline M23-A2. Wayne, PA:NCCLS.
  • National Committee for Clinical Laboratory Standards (NCCLS). (2001b). Performance standards for antimicrobial susceptibility testing. 11th information supplement, M100-S11. Wayne, PA:NCCLS.
  • Ogbole O, Segun P, Akinleye T, Fasinu P. 2018. Antiprotozoal, antiviral and cytotoxic properties of the Nigerian Mushroom, Hypoxylon fuscum Pers. Fr.(Xylariaceae). Acta Pharm. Sci. 56:43-56.
  • Ogidi OC, Oyetayo VO, Akinyele BJ. 2015. In vitro evaluation of antimicrobial efficacy of extracts obtained from raw and fermented wild macrofungus, Lenzites quercina. Int. J. Microbiol. Article ID 106308. O'Toole GA. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 30:e2437.
  • Prestinaci F, Pezzotti P, Pantosti A. 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health. 109:309-318. Roy R, Tiwari M, Donelli G, Tiwari V. 2018. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522-554.
  • Sevindik M, Rasul A, Hussain G, Anwar H, Zahoor MK, Sarfraz I, Kamran KS, Akgul H, Akata I, Selamoglu Z. 2018. Determination of anti-oxidative, anti-microbial activity and heavy metal contents of Leucoagaricus leucothites. Pak. J. Pharm. Sci. 31: 2163-2168.
  • Sevindik M. 2018. Antioxidant and antimicrobial activity of Cerrena unicolor. Mycopath. 16: 11-14.
  • Sevindik M. 2019. The novel biological tests on various extracts of Cerioporus varius. Fresenius Environ. Bull. 28: 3713-3717.
  • Signoretto C, Marchi A, Bertoncelli A, Burlacchini G, Papetti A, Pruzzo C, Zaura E, Lingström P, Ofek I, Pratten J, Spratt DA. 2014. The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial pathogens. BMC Complem. Altern. M. 14:75.
  • Silici S, Koc AN. 2006. Comparative study of in vitro methods to analyse the antifungal activity of propolis against yeasts isolated from patients with superficial mycoses. Lett. Appl. Microbiol. 43:318-324.
  • Tenover FC, Tokars J, Swenson J, Paul S, Spitalny K, Jarvis W. 1993. Ability of clinical laboratories to detect antimicrobial agent-resistant enterococci. J. Clin. Microbiol. 31:1695-1699.
  • Vestby LK, Møretrø T, Langsrud S, Heir E, Nesse LL. 2009. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories. BMC Vet. Res. 5:1-6.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.