Yıl: 2020 Cilt: 8 Sayı: 1 Sayfa Aralığı: 147 - 157 Metin Dili: İngilizce DOI: 10.24925/turjaf.v8i1.147-157.2878 İndeks Tarihi: 23-11-2020

UV-B Radiations and Secondary Metabolites

Öz:
Ultraviolet-B (UV-B: 280 to 320 nm) radiations have appeared to be detrimental to plants, due to their damaging effects on proteins, lipids, membranes and DNA. UV-B radiations are a significant regulator of plants’ secondary metabolites. High intensity of ultraviolet radiations may interfere with growth and productivity of crops. But low levels of UV-B radiations give rise to changes in the plants’ secondary metabolites such as phenolic compounds, carotenoids and glucoseinolates. Therefore, low intensity of UV-B radiations may be used to generate plants, enriched with secondary metabolites, having improved reproductive ability, early ripening and tolerance against fungi, bacteria and herbivores.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Ahmed SI, Hayat MQ, Tahir M, Mansoor Q, Ismail M, Keck K, Bates RB. 2016. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement. Altern. Med. 16: 460.
  • Baskar V, Gururani MA, Yu JW, Park SW. 2012. Engineering glucosinolates in plants: Current Knowledge and potential uses. Appl. Bioch. Biotech. 168: 1694-1717.
  • Becatti E, Petroni K, Giuntini D, Castagna A, Calvenzani V, Serra G, Mensuali-Sodi A, Tonelli C, Ranieri A. 2009. Solar UV-B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and -independent mechanisms. J. Agric. Food Chem. 57: 10979-10989.
  • Bilodeau SE, Wu B-S, Rufyikiri A-S, MacPherson S, Lefsrud M. 2019. An Update on Plant Photobiology and Implications for Cannabis Production. Front. Plant Sci. 29 March 2019 https://doi.org/10.3389/fpls.2019.00296.
  • Binkert M, Kozma-Bognar L, Terecskei K, De Veylder L, Nagy F, Ulm R. 2014. UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell. 26:4200- 4213.
  • Brosché M, Strid A. 2000. Ultraviolet‐B radiation causes tendril coiling in Pisum sativum. Plant and Cell Physiology. 41: 1077-1079.
  • Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins KI, Getzoff ED. 2012. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335: 1492–1496.
  • Couso I, Vila M, Vigara J, Cordero B, Vargas M, Rodríguez H, León R. 2012. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. Europ J Phycol., 47:223–232.
  • de la Rosa TM, Julkunen-Tiitto R, Lehto T, Aphalo PJ. 2001. Secondary metabolites and nutrient concentrations in silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates. New Phytologist. 150: 121–131.
  • Delgardo-Vargas F, Jime´nez AR, Paredes-Lo´pez O. 2000. Natural pigments: carotenoids, anthocyanins and betalains. Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition. 40: 173–289.
  • Demkura PV, Ballare CL. 2012. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol. Plant. 5:116-126.
  • Dietz KJ, Turkan I, Krieger-Liszkay A. 2016. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 171: 1541-1550.
  • Dyduch-Siemińska M, Najda A, Dyduch J, Gantner M, Klimek K. 2015. The Content of Secondary Metabolites and Antioxidant Activity of Wild Strawberry Fruit (Fragaria vesca L.). J Anal Methods Chem., 831238.
  • Escobar-Bravo R, Klinkhamer PGL, Leiss KA. 2017. Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front Plant Sci. 8:14
  • Fasano R, Gonzalez N, Tosco A, Dal Piaz F, Docimo T, Serrano R, Grillo S, Leone A. 2014. Inze D: Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B. Mol. Plant. 7:773-791.
  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R. 2009. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28:591-601.
  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R. 2009. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28: 591-601.
  • Feng H, Li S, Xue L, An L, Wang X. 2007. The interactive effects of enhanced UVB radiation and soil drought on spring wheat, South Afr. J. Bot. 73: 429-434
  • Fierro AC, Leroux O, De Coninck B, Cammue BP, Marchal K, Prinsen E, Van Der Straeten D, Vandenbussche F. 2015. Ultraviolet-B radiation stimulates downward leaf curling in Arabidopsis thaliana. Plant Physiol. Biochem. 93:9-17.
  • Fraser DP, Sharma A, Fletcher T, Budge S, Moncrieff C, Dodd AN, Franklin KA. 2017. UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Sci Rep. 7: 17758.
  • Frohnmeyer H, Staiger D. 2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 133:1420–28
  • Fu W, Guðmundsson Ó, Paglia G, Herjólfsson G, Andrésson ÓS, Palsson BØ, Brynjólfsson S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97(6):2395-2403.
  • Gao W, Zheng Y, Slusser JR, Heisler GM. 2003. Impact of enhanced ultravioletB irradiance on cotton growth, development, yield and qualities under field conditions. Agric. For. Meteor. 120: 241–248.
  • Gill SS, Anjum NA, Gill R, Tuteja N. 2015. DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci. World J. 250158. doi: 10.1155/2015/250158.
  • Gonzalez Besteiro MA, Bartels S, Albert A, Ulm R. 2011. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J. 68:727-737.
  • Gonzalez R, Mepsted R, Wellburn AR, Paul ND. 1998. Non‐photosynthetic mechanisms of growth reduction in pea (Pisum sativum L.) exposed to UV‐B radiation. Plant, Cell & Environment 21: 23-32.
  • Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R. 2010. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 107:20132-20137.
  • Gu XD, Sun MY, Zhang L, Fu HW, Cui L, Chen RZ, Zhang DW, Tian JK. 2010. UV-B induced changes in the secondary metabolites of Morus alba L. Leaves. Molecules. 15: 2980-2993.
  • Gupta SK, Sharma M, Deeba F, Pandey V. 2017. Plant response: UV-B avoidance mechanisms. In Singh VP, Singh S, Prasad SM, Pariha P. (eds). UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth. New York: John Wiley & Sons Ltd., 217–58.
  • Hagen SF, Borge GIA, Bengtsson GB, Bilger W, Berge A, Haffner K, Solhaug KA. 2007. Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): Effect of postharvest UV-B irradiation. Postharvest Biol. Technol. 45: 1–10.
  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ. 2013. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. U.S.A. 110, 6907–6912.
  • Hao G, Du X, Zhao F, Shi R, Wang J. 2009. Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tiss Organ Cult. 97: 175–185.
  • Hashimoto H, Uragami C, Cogdell RJ. 2016. Carotenoids and photosynthesis. Subcell. Biochem. 79:111–139.
  • Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA. 2017. UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr. Biol. 27:120-127.
  • Hayes S, Velanis CN, Jenkins GI, Franklin KA. 2014. UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc. Natl. Acad. Sci. 111 :11894-11899.
  • Heijde M, Ulm R. 2012. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 17:230–37.
  • Heijde M, Ulm R. 2013. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl. Acad. Sci. 110:1113-1118.
  • Heinze M, Hanschen FS, Wiesner-Reinhold M, Baldermann S, Grafe J, Schreiner M, Neugart S. 2018. Effects of developmental stages and reduced uvb and low uv conditions on plant secondary metabolite profiles in Pak Choi (Brassica rapa subsp chinensis). J. Agric. Food Chem. 66: 1678–1692.
  • Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, Wargent JJ, Espley RV. 2018. Solar UV light regulates flavonoid metabolism in apple (Malus × domestica). Plant Cell Environ. 41(3):675–688
  • Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology. 67: 283-335.
  • Hideg É, Jansen MAK, Strid Å. 2013. UVB exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18: 107–115.
  • Hidema J, Kumagai T. 2006. Sensitivity of rice to ultraviolet-B radiation. Annal Bot. 97:933–42.
  • Hilal M, Rodríguez-Montelongo L, Rosa M, Gallardo M, González JA, Interdonato R, Rapisarda VA, Prado FE. 2008. Solar and supplemental UV-B radiation effects in lemon peel UV-B-absorbing compound content-seasonal variations. Photochem. Photobiol. 84:1480–1486.
  • Höll J, Lindner S, Walter H, Joshi D, Poschet G, Pfleger S, Ziegler T, Hell R, Bogs J, Rausch T. 2019. Impact of pulsed UV-B stress exposure on plant performance: How recovery periods stimulate secondary metabolism while reducing adaptive growth attenuation. Plant Cell Environ. 42(3):801-814.
  • Huang S, Van Aken O, Schwarzlander M, Belt K, Millar AH. 2016. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol. 171:1551–1559.
  • Huyskens-Keil S, Schreiner M, Krumbein A, Reichmuth C, Janata E, Ulrichs C. 2010. UV-B and gamma irradiation as physical elicitors to promote phytochemicals in Brassica sprouts. Acta Hort. 858: 37–41.
  • Indrajith A, Ravindran KC. 2009. Antioxidant potential of Indian medicinal plant on Phyllanthus amarus L. under supplementary UV-B radiation. Recent Res. Sci. Technol. 1: 34-42.
  • Interdonato R, Rosa M, Nieva CB, Gonzalez JA, Hilal M, Prado F.E. 2010. Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons. Environ. Exp. Bot. 70: 204–211.
  • Janetta Nithia SM, Shanthi N. 2017. Effect of enhanced solar UVB (280-320nm) radiation on secondary pigment synthesis in some plants. International Journal of Environmental & Agriculture Research. 3 (1):111-115
  • Jansen MAK, Bornman JF. 2012. UV-B radiation: from generic stressor to specific regulator. Physiol. Plantarum. 145: 501-504.
  • Jansen MAK, Hectors K, O’Brien NM, Guisez Y, Potters G. 2008. Plant stress and human health: Do human consumer benefit from UV-B acclimated crops? Plant Sci. 175: 449–458.
  • Johnson CB, Kirby J, Naxakis G, Pearson S. 1999. Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry, 51: 507–510.
  • Jones GV, White MA, Cooper OR, Storchmann K. 2005. Climate change and global wine quality. Clim. Change 73: 319–343.
  • Juozaitytė R, Ramaškevičienė A, Sliesaravičius A, Burbulis N, Kuprienė R, Liakas V, Blinstrubienė A. 2008. Effects of UVB radiation on photosynthesis pigment system and growth of pea (Pisum sativum L.). Sci Works Lithuanian Inst. Hortic. Lithuanian Univ. Agric. 27: 179-186.
  • Kakani VG, Reddy KR, Zhao D, Mohammed AR. 2003 b. Ultraviolet-B radiation effects on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann. Bot. 817–826.
  • Kakani VG, Reddy KR, Zhao D, Sailaja K. 2003 a. Field crop response to ultraviolet-B radiation: a review. Agric Forest Meteorol. 120:191–218
  • Kasote DM, Katyare SS, Hegde MV, Bae H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 11:982–991.
  • Kaspar S, Matros A, Mock H-P. 2010. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. Journal of Proteome Research. 9(5): 2402–2411.
  • Kataria S, Jajoo A, Guruprasad KN. 2014. Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B Bio.l 137:55–66.
  • Katerova Z, Todorova D, Tasheva K, Sergiev I. 2012. Influence of ultraviolet radiation on plant secondary metabolite production. Genetics and Plant Physiology. 2(3–4): 113–144.
  • Khudyakova AY, Kreslavski VD, Shmarev AN, Lyubimov VY, Shirshikova GN, Pashkovskiy PP, Kuznetsov VV, Allakhverdiev SI. 2019 Impact of UV-B radiation on the photosystem II activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under light of different spectral composition. Journal of Photochemistry and Photobiology B: Biology. 194: 14-20.
  • Kim DS, Hwang BK. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot. 65(9): 2295–2306.
  • Klein FRS, Reis A, Kleinowski AM, Telles RT, do Amarante L, Peters JA, Braga EJB. 2018. UV-B radiation as an elicitor of secondary metabolite production in plants of the genus Alternanthera. Acta Bot. Bras. 32 (4): 615-623.
  • Klem K, Ač A, Holub P, Kováč D, Špunda V, Robson TM, Urban O. 2012. Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ. Exp. Bot. 75:52–64.
  • Kliebenstein DJ, Kroymann J, Mitchell-Olds T. 2005. Current Opinion in Plant Biology. 8: 264–271.
  • Koti S, Reddy KR, Reddy VR, Kakani VG, Zhao D. 2005. Interactive effects of carbon dioxide, temperature, and ultraviolet‐B radiation on soybean (Glycine max L.) flower 251 and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany. 56: 725–736
  • Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 162750.
  • Kumari R, Prasad MNV. 2013. Medicinal Plant Active Compounds Produced by UV-B Exposure. Sustainable Agriculture Reviews. 12:225–254. doi: 10.1007/978-94-007-5961-9_8
  • Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR. 2011. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 67:354–369.
  • Lake, JA, Field KJ, Davey MP, Beerling DJ, Lomax BH. 2009. Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant, Cell Environ. 32: 1377–1389.
  • Lavola A, Aphalo PJ, Lahti M, Julkunen- Tiitto R. 2003. Nutrient availability and the effect of increasing UV-B radiation on secondary plant compounds in Scots .pine. Environm Exp Botany, 49: 49–60.
  • Lavola A, Julkunen-Tııtto R, Aphalo P, De La Rosa T, Lehto T. 1998. The effect of UV-B radiation on UV-absorbing secondary metabolites in birch seedlings grown under simulated forest soil. New Phytol.137:617-621.
  • Lee MJ, Son JE, Oh MM. 2014. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. Journal of the Science of Food and Agriculture. 94, 197-204.
  • Liu C, Han X, Cai L, Lu X, Ying T, Jiang Z. 2011. Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biol. Technol. 59: 232–237.
  • Liu L, Dennis C, Gitz III, McClure JW. 1995. Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol Plant. 93:734-8
  • Liu L, Gregan S, Jordan WC. 2015. From UVR8 to flavonol synthase: UV- induced gene expression in Sauvignon blanc grape berry. Plant Cell Environment. 38: 905-919.
  • Ma M, Wang P, Yang R, Gu Z. 2018. Effects of UV-B Radiation on the Isoflavone Accumulation and Physiological-biochemical Changes of Soybean during Germination. Food Chemistry. 250:259-267.
  • Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. 2018. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Letters. 413:11-22.
  • Mao B, Yin H, Wang Y, Zhao TH, Tian RR, Wang W, Jia-Shu Y. 2017. Combined effects of O3 and UV radiation on secondary metabolites and endogenous hormones of soybean leaves. PLoS ONE 12(8): e0183147. https://doi.org/10.1371/journal.pone.0183147
  • Mark U, Tevini M. 1996. Combination effects of UV‐B radiation and temperature on sunflower (Helianthus annuus L., cv. Polstar) and maize (Zea mays L., cv. Zenit 2000) seedlings. Journal of Plant Physiology. 148: 49-56
  • Matthew Robson T, Klem K, Urban O, Jansen MAK. 2015. Re-interpreting plant morphological responses to UV-B radiation. Plant, Cell and Environment. 38: 856-866.
  • Mazza CA, Ballare CL. 2015. Photoreceptors UVR8 and phytochrome B cooperate to optimize plant growth and defense in patchy canopies. New Phytol. 207:4-9.
  • Menghini A, Capuccella M, Mercati V, Mancini L, Burata M. 1993. Flavonoids contents in Passiflora spp. Pharmacol. Res. Commun. 27:13-14
  • Mewis M, Schreiner N, Nhi C, Krumbein A, Ulrichs C, Lohse M, Zrenner R.2012. UV-B irradiation changes specifically the secondary metabolite Profile in Broccoli sprouts: Induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol. 53:1546-1560
  • Morales LO, Brosché M, Vainonen J, Jenkins GI, Wargent JJ, Sipari N, Strid Å, Lindfords AV, Tegelberg R, Aphalo PJ. 2013. Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. Plant Physiol. 161: 744-759.
  • Morales LO, Tegelberg R, Brosché M, Keinänen M, Lindfors A, Aphalo PJ. 2010. Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol. 30:923–934.
  • Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. 2017. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int J Mol Sci. 4:18(11).
  • Mozaffarian D, Wu JHY. 2018. Flavonoids, dairy foods, and cardiovascular and metabolic health: a review of emerging biologic pathways. Circ Res. 122(2):369-84.
  • Nascimento LBDS, Leal-Costa MV, Menezes EA, Lopes VR, Muzitano MF, Costa SS, Tavares ES. 2015. Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. J Photochem Photobiol B Biol. 148:73-81.
  • Neugart S, Fiol M, Schreiner M, Rohn S, Zrenner R, Kroh LW, Krumbein A. 2014. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flvonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica). Journal of Agricultural and Food Chemistry. 62: 4054-4062.
  • Neugart S, Schreiner M. 2018. UVB and UVA as eustressors in horticultural and agricultural crops, Sci. Hortic. 234: 370–381
  • Nile SH, Keum YS, Nile AS, Jalde SS, Patel RV. 2018. Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J Biochem Mol Toxicol. 32(1):e22002.
  • Nithia SMJ, Shanthi N, Kulandaivelu G. 2005. Different responses to UV-B enhanced solar radiation in radish and carrot. Photosynthetica. 43:307-311.
  • Ordidge M, Garcia-Macias P, Battey NH, Gordon MH, Hadley P, John P, Lovegrove JA, Vysini E, Wagstaffe A. 2010. Phenolic contents of lettuce, strawberry, raspberry, and blueberry crops cultivated under plastic films varying in ultraviolet transparency. Food Chem. 119:1224–1227
  • Pandey N, Pandey-Rai S. 2014. Short-term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. Plant Cell Tiss Organ Cult.116:371-385
  • Pandeya A, Rayamajhi S, Pokhrel P, Giri B. 2018. Evaluation of secondary metabolites, antioxidant activity, and color parameters of Nepali wines. Food and nutrition. 6 (8): 2252-2263.
  • Pastore C, Allegro G, Valentini G, Muzzi E, Filippetti I. 2017. Anthocyanin and favonol composition response to veraison leaf removal on Cabernet Sauvignon, Nero d’Avola, Raboso Piave and Sangiovese Vitis vinifera L. cultivars. Sci. Hortic. 218: 147-155.
  • Pérez-Balibrea S, Moreno DA, García-Viguera C. 2010. Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination. J. Food Sci. 75: 673-677.
  • Petersen M, Hans J, Matern U. 2010. “Biosynthesis of phenylpropanoids and related compounds,” in Annual Plant Reviews: Biochemistry of Plant Secondary Metabolism, Vol. 40, ed. M. Wink (Hoboken, NJ: Wiley-Blackwell). 182–257.
  • Quan J, Song S, Abdulrashid K, Chai Y, Yue M, Liu X. 2018. Separate and combined response to UV-B radiation and jasmonic acid on photosynthesis and growth characteristics of Scutellaria baicalensis. Int. J. Mol. Sci. 19:1194
  • Radyukina YV, Mapelli IS, Mikheeva LE, Karbysheva EA. 2017. Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya. 72(3): 179–183.
  • Ramani S, Chelliah J. 2007. UV-B-induced signalling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol. 7:61–77. doi:10.1186/1471-2229-7-61
  • Ramani S, Chelliah J. 2008. Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal. 3: 9–14.
  • Ravindran KC, Indrajith A, Pratheesh PV, Sanjiviraja K, Balakrishnan V. 2010. Effect of ultraviolet-B radiation on biochemical and antioxidant defence system in Indigofera tinctoria L. seedlings. Int. J. Eng. Tech. 2 (5): 226-232.
  • Reifenrath K, Mueller C. 2007. Species-specifi and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochemistry. 68: 875-885.
  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins GI, Ulm R. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science. 332:103–106.
  • Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F. 2015. Plant derived and dietary phenolic antioxidants: anticancer properties, Food Chemistry. 183: 235-258.
  • Ruijuan Ma, Xurui Zhao, Youping Xie, Shih-Hsin Hoa, Jianfeng Che. 2019. Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresource Technology. 275:416-420.
  • Rybarczyk-Plonskaa A, Hagen SF, Borge GIA, Bengtsson GB, Hansena MK, Wold AB. 2016. Glucosinolates in broccoli (Brassica oleracea L. var. italica) as affected by postharvest temperature and radiation treatments. Postharvest Biology and Technology 116:16-25.
  • Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A. 2011. Influence of UV-B on flavonol aglycones and main flavonol glycosides in kale (Brassica oleracea var. sabellica). In: Proceedings UV4growth, COST Action FA0906, 7–9 February, Szeged, Hungary, p. 27.
  • Schreiner M, Krumbein A, Mewis I, Ulrichs C, HuyskensKeil S. 2009. Short-term and moderate UV-B radiation efects on secondary plant metabolism in different organs of nasturtium (Tropaeolum majus L.). Innovative Food Science & Emerging Technologies. 10: 93-96.
  • Schreiner M, Mewis I, Huyskens-Keil S, Jansen MAK, Zrenner R, Winkler JB, O’Brien N, Krumbein A. 2012. UV-B-Induced Secondary Plant Metabolites - Potential Benefits for Plant and Human Health, Critical Reviews in Plant Sciences. 31:3: 229-240.
  • Schreiner M, Mewis I, Huyskens-Keil S, Jansen MAK, Zrenner R, Winkler J.B. O’Brien N, Krumbein A. 2012. UV-B-Induced Secondary Plant Metabolites Potential Benefits for Plant and Human Health, Critical Reviews in Plant Sciences. 31(3): 229-240
  • Schreiner M. 2009. Die Rolle des Verbrauchers in der Wertschopfungskette.¨ In: Status quo und Perspektiven des deutschen Gartenbaus, pp. 99–109. Dirksmeyer, W., Ed., Landbauforschung vti, Sonderheft 330, Braunschweig, Germany.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:217037.
  • Sharma R. 2001. Impact of solar UV-B on tropical ecosystems and agriculture. Case study: effect of UV-B on rice. Proc. SEAWIT98 SEAWPIT2000. 1: 92–101.
  • Sharma S, Chatterjee S, Kataria S, Joshi J, Datta S, Vairale MG, Veer V. 2017. A review of stress and responses of plants to UV-B radiation. In: Singh VP, Singh S, Prasad MS, Parihar P (eds) UV-B radiation: from environmental stressor to regulator of plant growth. Wiley-Blackwell, New York, pp 75–99.
  • Shen J, Jiang C, Yan Y, Liu B, Zu C. 2017. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet Mol Res. 8:16(1).
  • Shen Y, Li J, Gu R, Yue L, Wang H, Zhan X, Xing B. 2018. Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf. Chemosphere. 197:513-525.
  • Singh R, Singh S, Tripathi R, Agrawal SB. 2011. Supplemental UV-B radiation induced changes in growth, pigments and antioxidant pool of bean (Dolichos lablab) under field conditions. J. Environ. Biol. 32: 139-145.
  • Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R. 2010. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/ MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ. 33:88-103.
  • Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. 2018. Carotenoid Metabolism in Plants: The Role ofPlastids. Mol. Plant.11: 58–74. Sunoj VSJ, Shroyer KJ, Jagadish SVK, Prasad PV. 2016. Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. Environ Exp Bot. 130:113-121.
  • Szymańska R, Ślesak I, Orzechowska A, Kruk J. 2017. Physiological and biochemical responses to high light and temperature stress in plants. Environmental and Experimental Botany. 139:165-177.
  • Takshak S, Agrawal SB. 2015. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: augmentation of secondary metabolites and antioxidants. Plant Physiology and Biochemistry. 97:124-138.
  • Tatullo M, Simone GM, Tarullo F, Irlandese G, De Vito D, Marrelli M, Santacroce L, Cocco T, Ballini A, Scacco S. 2016. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process. Sci. Rep. 6: 36042.
  • Teramura AH, Sullivan JH, Lydon J. 1990. Effects of UV-B radiation in altering soybean yield: a 6-year field study. Physiol. Plant. 80: 5-11
  • Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LA. 2009. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana, PLoS Genet. 5, e1000638.
  • Tohidi-Moghadam HR, Ghooshchi F, Jamshidpour F, Zahedi H. 2012. Effect of UV radiation and elevated CO2 on physiological attributes of canola (Brassica napus L.) grown under water defiit stress. Polish Journal of Environmental Studies. 21: 1417–1427.
  • Topcu Y, Dogan A, Kasimoglu Z, Nadeem HS, Polat E, Erkan M. 2015. The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiology and Biochemistry. 93:56-65.
  • Torres S, Cabrera-Pardo JR, Alonso F, Bustos E, Perez C, Palfner G, Hernandez V, Uriarte E, Becerra J. 2016. Changes in secondary metabolites profiles and biological activity of the fresh fruiting bodies of Stereum hirsutum exposed to high-dose UV-B radiation. J. Chil. Chem. Soc. 61(4): 3224-3227
  • Tossi V, Lamattina L, Jenkins GI, Cassia RO. 2014. Ultraviolet-Binduced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxidedependent mechanism. Plant Physiol. 164:2220-2230.
  • Vandenbussche F, Tilbrook K, Fierro AC, Marchal K, Poelman D, Van Der Straeten D, Ulm R. 2014. Photoreceptor-mediated bending towards UV-B in Arabidopsis. Mol. Plant. 7:1041-1052.
  • Verdaguer D, Jansen MAK, Llorens L, Morales LO, Neugart S. 2017. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 255: 72–81
  • Vidovic´ M, Morina F, Milic´ S, Zechmann B, Albert A, Winkler JB, Jovanovic SV. 2015. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. Plant, Cell and Environment. 38: 968–979.
  • Virjamo V, Sutinen S, Julkunen-Tiitto R. 2014. Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings. Glob. Change Biol. 20: 2252–2260.
  • Wang H, Gui M, Tian X, Xin X, Wang T, Li J. 2017. Effects of UV‐B on vitamin C, phenolics, flavonoids and their related enzyme activities in mung bean sprouts (Vigna radiata). International Journal of Food Science and Technology. 52 (3): 827-833.
  • Wang PC, Mo BT, Long ZF, Fan SQ, Wang HH. 2016. Factors afecting seed germination and emergence of Sophora davidii. Ind Crop Prod. 87:261–265.
  • Wang Y, Xu WJ, Yan XF, Wang Y. 2011. Glucosinolate content and related gene expression in response to enhanced UV-B radiation in Arabidopsis. African Journal of Biotechnology. 10: 6481–6491.
  • Wargent JJ, Gegas VC, Jenkins GI, Doonan JH, Paul ND. 2009. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytol. 183:315-326.
  • White AL, Jahnke LS. 2002. Contrasting efects of UV-A and UV-B on photosynthesis and photoprotection of β-carotene in two Dunaliella spp. Plant & Cell Physiology (PCP). 43 (8): 877-884.
  • Winter TR, Rostas M. 2008. Ambient ultraviolet radiation induces protective responses insoybean but does not attenuate indirect defense. Environ. Pollut. 155: 290-297.
  • Wu D, Hu Q, Yan, Z, Chen W, Yan CY, Huang, X, Zhang J, Yang PY, Deng HT, Wang JW, Deng, XW, Shi YG. 2012. Structural basis of ultraviolet-B perception by UVR8. Nature 484: U214–U296.
  • Wulff A, Anttonen S, Pellinen R, Savonen EM, Sutinen ML, Heller W, Sandermann Jr H, Kangasjärvi J. 1999. Birch (Betula pendula Roth.) responses to high UV-B radiation. Boreal Environment Research. 4: 77–88
  • Xie Y, Zhang W, Duan X, Dai C, Zhang Y, Cui W, Wang R, Shen W. 2015. Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso) flavonoids and antioxidant defence in Medicago sativa. Functional Plant Biology. 42: 1141–1157.
  • Xie Y, Yang W, Tang F, Chen X, Ren L. 2015. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 22 (1):132-49.
  • Xu GL, Singh SK, Reddy VR, Barnaby JY. 2016 Soybean grown under elevated CO2 benefts more under low temperature than high temperature stress: varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. J Plant Physiol. 205:20–32.
  • Yang DL, Sun P, Li MF. 2016. Chilling temperature stimulates growth, gene over-expression and podophyllotoxin biosynthesis in Podophyllum hexandrum royle. Plant Physiol Biochem. 107:197–203.
  • Yang Y, Yang X, Jang Z, Chen Z, Ruo X, Jin W, Wu Y, Shi X, Xu M. 2018. UV RESISTANCE LOCUS 8 From Chrysanthemum morifolium Ramat (CmUVR8) Plays Important Roles in UV-B Signal Transduction and UV-B-Induced Accumulation of Flavonoids. Front Plant Sci. 9: 955. Yin R, Ulm R. 2017. How plants cope with UV-B: from perception to response. Curr Opin Plant Biol. 37:42-48.
  • Young AJ, Lowe GL. 2018. Carotenoids-antioxidant properties. Antioxidants 7:28-31.
  • Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA. 2003. Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Russian Journal of Plant Physiology. 50(2): 270–275.
  • Zu Y, Li Y, Chen J, Chen H. 2004. Intraspecific responses in grain quality of 10 wheat cultivars to enhanced UV-B radiation under field conditions. J. Photochem. Photobiol. B Biol. 74: 95-100.
APA Yavas İ, Unay A, Ali S, Abbas Z (2020). UV-B Radiations and Secondary Metabolites. , 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
Chicago Yavas İlkay,Unay Aydin,Ali Shafaqat,Abbas Zohaib UV-B Radiations and Secondary Metabolites. (2020): 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
MLA Yavas İlkay,Unay Aydin,Ali Shafaqat,Abbas Zohaib UV-B Radiations and Secondary Metabolites. , 2020, ss.147 - 157. 10.24925/turjaf.v8i1.147-157.2878
AMA Yavas İ,Unay A,Ali S,Abbas Z UV-B Radiations and Secondary Metabolites. . 2020; 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
Vancouver Yavas İ,Unay A,Ali S,Abbas Z UV-B Radiations and Secondary Metabolites. . 2020; 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
IEEE Yavas İ,Unay A,Ali S,Abbas Z "UV-B Radiations and Secondary Metabolites." , ss.147 - 157, 2020. 10.24925/turjaf.v8i1.147-157.2878
ISNAD Yavas, İlkay vd. "UV-B Radiations and Secondary Metabolites". (2020), 147-157. https://doi.org/10.24925/turjaf.v8i1.147-157.2878
APA Yavas İ, Unay A, Ali S, Abbas Z (2020). UV-B Radiations and Secondary Metabolites. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 8(1), 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
Chicago Yavas İlkay,Unay Aydin,Ali Shafaqat,Abbas Zohaib UV-B Radiations and Secondary Metabolites. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 8, no.1 (2020): 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
MLA Yavas İlkay,Unay Aydin,Ali Shafaqat,Abbas Zohaib UV-B Radiations and Secondary Metabolites. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.8, no.1, 2020, ss.147 - 157. 10.24925/turjaf.v8i1.147-157.2878
AMA Yavas İ,Unay A,Ali S,Abbas Z UV-B Radiations and Secondary Metabolites. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2020; 8(1): 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
Vancouver Yavas İ,Unay A,Ali S,Abbas Z UV-B Radiations and Secondary Metabolites. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2020; 8(1): 147 - 157. 10.24925/turjaf.v8i1.147-157.2878
IEEE Yavas İ,Unay A,Ali S,Abbas Z "UV-B Radiations and Secondary Metabolites." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 8, ss.147 - 157, 2020. 10.24925/turjaf.v8i1.147-157.2878
ISNAD Yavas, İlkay vd. "UV-B Radiations and Secondary Metabolites". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 8/1 (2020), 147-157. https://doi.org/10.24925/turjaf.v8i1.147-157.2878