Yıl: 2020 Cilt: 9 Sayı: 3 Sayfa Aralığı: 1315 - 1326 Metin Dili: Türkçe İndeks Tarihi: 23-11-2020

24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü

Öz:
Bu çalışmada 24 Mayıs 2014 Kuzey Ege Denizi depreminin kırılma özellikleri telesismik P ve SH dalga şekillerikullanılarak araştırılmıştır. Ters çözüm sonuçları depremin iç merkezinin KD yönünde konumlanan üç faypürüzünün yenilmesi nedeniyle oluştuğu belirlenmiştir. Depremin iç merkezine en yakın pürüz 10 km derinliğinaltında konumlanmış şekilde bulunurken uzak pürüzler ise 10 km derinliğin üzerinde konumlanmış haldedir. Enbüyük kayma genliği ve toplam salınan sismik moment sırasıyla 1.2 m ve 2.180 x1019 Nm olarak bulunmuştur.
Anahtar Kelime:

Finite-fault Waveform Inversion of the May 24, 2014 Northern Aegean Sea Earthquake (Mw = 6.9)

Öz:
In this study, the finite-fault rupture properties of the North Aegean Sea earthquake of 24 May 2014 have been investigated by inverting the teleseismic P and SH body waveforms. The inversion results indicated that the earthquake was due to failure of three asperities all of which were located in the NE of the hypocentre indicating unilateral fault rupture. The asperity closest to the hypocentre was located below the depth of 10 km while the distant asperities were located above the depth of 10 km. The maximum slip amplitude and total seismic moment release were found to be 1.2 m and 2.180 x1019 Nm, respectively.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] AFAD, 2014. 24 Mayıs 2014 Gökçeada Açıkları (Ege Denizi) Depremi (Mw=6.5) Basın Bülteni.
  • [2] Altinok Y., Alpar B., Yaltirak C. 2003. Tsunami of Şarkoy-Mürefte 1912 Earthquake: Western Marmara, Turkey. In Submarine Landslides and Tsunamis (pp. 33-42). Springer, Dordrecht.
  • [3] Karabulut H., Roumelioti Z., Benetatos C., Mutlu A.K., Özalaybey S., Aktar M., Kiratzi A. 2006. A source study of the 6 July 2003 (Mw 5.7) earthquake sequence in the Gulf of Saros (Northern Aegean Sea): seismological evidence for the western continuation of the Ganos fault. Tectonophysics, 412 (3-4): 195-216.
  • [4] KRDAE, 2014. Ulusal Deprem İzleme Merkezi 24 Mayıs 2014 Gökçeada Açıkları Ege Denizi Depremi, Basın Bülteni.
  • [5] McClusky S., Balassanian S., Barka A., Demir C., Ergintav S., Georgiev I., Gurkan O., Hamburger M., Hurst K., Kahle H., Kastens K., Kekelidze G., King R., Kotzev V., Lenk O., Mahmoud S., Mishin A., Nadariya M., Ouzounis A., Paradissis D., Peter Y., Prilepin M., Reilinger R., Sanlı I., Seeger H., Tealeb A., Toksoz M.N., Veis G. 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105: 5695-5719.
  • [6] Barka A.A., Kadinsky‐Cade K. 1988. Strike‐slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7 (3): 663-684.
  • [7] Emre Ö., Duman T.Y., Olgun Ş., Elmacı H., Özalp S. 2012. 1: 250.000 Ölçekli Türkiye Diri Fay Haritası Serisi. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • [8] Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F. 2013. Scale 1/1.250.000 Turkey Live Fault Map. General Directorate of Mineral Reserach and Exploration special publications series, Ankara, Turkey.
  • [9] Taymaz T., Kasahara J., Hirn A., Sato T. 2001. Investigations of micro-earthquake activity within the Sea of Marmara and surrounding regions by using ocean bottom seismometers (OBS) and land seismographs: initial results. In Proc Symposium Seismotectonics of the north-western Anatolia-Aegean and recent Turkish earthquakes, Istanbul, 42-51.
  • [10] Jolivet L., Faccenna C., Huet B., Labrousse L., Pourhiet L., Lacombe O., Lecomte E., Burov E., Denele Y., Brun J.P., Philippon M., Paul A., Salaün G., Karabulut H., Piromallo C., Monie P., Gueydan F., Okay A., Oberhansli R., Pourteau A., Auiger R., Gadenne L., Driussi O. 2012. Aegan Tectonivs: Strain localisation, slab tearing and trench retreat. Tectonophysics, Tecto-125491, 33.
  • [11] Ambraseys N.N. 2001. Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International, 145: 471-485.
  • [12] Ambraseys N.N. 2009. Earthquakes in the eastern Mediterranean and the Middle East: a multidisciplinary study of 2,000 years of seismicity. Cambridge University Press.
  • [13] Nalbant S.S., Hubert A., King G.C.P. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. Journal of Geophysical Research, 103: 24 469-24 486.
  • [14] Caputo R., Chatzipetors A., Pavlides S., Sboras S. 2012. The Greek Database of Siesmogenic Sources (GreDaSS): state-of-the-art for northern Greece. Annals of Geophysics, 55: 5. Doi: 10.4401/ag-5168.
  • [15] Le Pichon X., Kreemer C. 2010. The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38: 323-351.
  • [16] Nyst M., Thatche, W. 2004. New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research, 109, B11406, doi:10.1029/2003JB002830.
  • [17] Reilinger R., McClusky S., Paradissis D., Ergintav S., Vernant P. 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488 (1-4): 22-30.
  • [18] Koral H., Öztürk H., Hanilçi N. 2009. Tectonically induced coastal uplift mechanism of Gökçeada Island, northern Aegean Sea, Turkey. Quaternary International, 197 (1-2): 43-54.
  • [19] Horasan G., Gülen L., Pinar A., Kalafat D., Özel N., Kuleli H.S., Isikara A.M. 2002. Lithospheric structure of the Marmara and Aegean regions, western Turkey. Bulletin of the Seismological Society of America, 92 (1): 322-329.
  • [20] Kürçer A., Yalçın H., Gülen L., Kalafat D. 2014. 8 January 2013 Mw = 5.7 North Aegean Sea earthquake and its seismotectonic significance. Geodinamica Acta, DOI: 10.1080/09853111.2014.957503.
  • [21] Kalafat D., Kekovali K., Pinar A. 2015. Moment tensor inversion of the January 8, 2013 (Mw= 5.7) and May 24, 2014 (Mw 6.8) North Aegean Earthquakes: seismicity and active tectonics of the North Aegean Region. In EGU General Assembly Conference Abstracts.
  • [22] Saltogianni V., Gianniou M., Taymaz T., Yolsal-Çevikbilen S., Stiros S. 2015. Fault slip source models for the 2014 M 6.9 Samothraki-Gökçeada Earthquake (North Aegean Trough) combining geodetic and seismological observations. Journal of Geophysical Research Solid Earth, 120: 8610-8622.
  • [23] Kiratzi A., Tsakiroudi E., Benetatos C., Karakaisis G. 2016. The 24 May 2014 (Mw6. 8) earthquake (North Aegean Trough): spatiotemporal evolution, source and slip model from teleseismic data. Physics and Chemistry of the Earth, Parts A/B/C, 95: 85-100.
  • [24] Lay T., Wallace T.C. 1995. Modern Global Seismology. Vol. 58, Elsevier.
  • [25] Udias A., Buforn E. 1996. Source mechanism of earthquakes from Seismic waves. Third Workshop on 3D modelling of Seismic waves generation propagation and their inversion, Trieate, Italy.
  • [26] Udias A. 1999. Principles of Seismology. Cambridge University Press, Cambridge, ISBN 0-521 62434-7.
  • [27] Utkucu M., Pınar A., Alptekin Ö. 2002. A detailed slip model for the 1995, October 1, Dinar, Turkey, earthquake (Ms= 6.1) determined from inversion of teleseismic P and SH waveforms. Geophysical Journal International, 151 (1): 184-195.
  • [28] Hartzell S.H., Heaton T.H. 1983. Inversion of strong-ground motion and teleseismic wave form data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73: 1553-1583.
  • [29] Kikuchi M., Kanamori H. 1991. Inversion of complex body wave-III. Bulletin of the Seismological Society of America, 81: 2335-2350.
  • [30] Yoshida S. 1992. Waveform inversion for rupture process using a non-flat seafloor model: application to 1986 Andreanof Islands and 1985 Chile earthquake. Tectonophysics, 211: 45-59.
  • [31] Yoshida S., Kokhetsu K., Shıbazakı B., Sagıya T., Kato T., Yoshida Y. 1996. Joint Inversion Of Near- And Far-Field Waveforms And Geodetic Data For Rupture Process Of The 1995 Kobe Earthquake. Journal of Physics of the Earth, 44: 437-454.
  • [32] Ide S., Takeo M. 1996. Determination of constitutive relations of fault slip based on seismic wave analysis. Journal of Geophysical Research, 102: 27379-27391.
  • [33] Yagi Y., Mikumo T., Pacheco J., Reyes G. 2004. Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bulletin of the Seismological Society of America, 94 (5): 1795-1807.
  • [34] Langston C.A., Helmberger D.V. 1975. A procedure for modelling shallow dislocation sources. Geophysical Journal International, 42 (1): 117-130.
  • [35] Karabulut H., Bouin M.-P., Bouchon M., Dietrich M., Cornou C., Aktar M. 2002. The seismicity in the Eastern Marmara Sea after the 17 August 1999 Izmit Earthquake. Bulletin of the Seismological Society of America, 92: 387-393.
  • [36] Görgün E., Görgün B. 2015. Seismicity of the 24 May 2014 Mw 7.0 Aegean Sea earthquake sequence along the North Aegean trough. Journal of Asian Earth Sciences, 111: 459-469.
  • [37] Evangelidis C.P. 2015. Imaging supershear rupture for the 2014 Mw 6.9 Northern Aegean earthquake by backprojection of strong motion waveforms. Geophysical Research Letters, 42 (2): 307-315.
  • [38] Konca A.O., Cetin S., Karabulut H., Reilinger R., Dogan U., Ergintav S., Cakir Z., Tari E. 2018. The 2014, M W6. 9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities. Geophysical Journal International, 213 (2): 1113-1120.
  • [39] Sodoudi F., Kind R., Hatzfeld D., Priestley K., Hanka W., Wylegalla K., Stavrakakis G., Vafidis A., Harjes H-P., Bohnhoff M. 2006. Lithospheric structure of the Aegean obtained from P and S receiver functions, Journal of Geophysical Research: Solid Earth, 111: B12307.
APA BUDAKOĞLU E, UTKUCU M (2020). 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. , 1315 - 1326.
Chicago BUDAKOĞLU Emrah,UTKUCU Murat 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. (2020): 1315 - 1326.
MLA BUDAKOĞLU Emrah,UTKUCU Murat 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. , 2020, ss.1315 - 1326.
AMA BUDAKOĞLU E,UTKUCU M 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. . 2020; 1315 - 1326.
Vancouver BUDAKOĞLU E,UTKUCU M 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. . 2020; 1315 - 1326.
IEEE BUDAKOĞLU E,UTKUCU M "24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü." , ss.1315 - 1326, 2020.
ISNAD BUDAKOĞLU, Emrah - UTKUCU, Murat. "24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü". (2020), 1315-1326.
APA BUDAKOĞLU E, UTKUCU M (2020). 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(3), 1315 - 1326.
Chicago BUDAKOĞLU Emrah,UTKUCU Murat 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9, no.3 (2020): 1315 - 1326.
MLA BUDAKOĞLU Emrah,UTKUCU Murat 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.9, no.3, 2020, ss.1315 - 1326.
AMA BUDAKOĞLU E,UTKUCU M 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(3): 1315 - 1326.
Vancouver BUDAKOĞLU E,UTKUCU M 24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(3): 1315 - 1326.
IEEE BUDAKOĞLU E,UTKUCU M "24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9, ss.1315 - 1326, 2020.
ISNAD BUDAKOĞLU, Emrah - UTKUCU, Murat. "24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9/3 (2020), 1315-1326.