Yıl: 2020 Cilt: 8 Sayı: 2 Sayfa Aralığı: 367 - 382 Metin Dili: İngilizce DOI: doi: 10.33715/inonusaglik.736510 İndeks Tarihi: 02-11-2020

VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR

Öz:
In this research, for the simultaneous analysis of melatonin (MET) and dopamine (DP), graphene oxide/polyimide (GO/PI) composite electrode was prepared with the modification of Pt electrode. Firstly, GO/PI composite structure was synthesized from 2,6-diaminopyridine based polyimide and 5% GO. Then, the obtained composite structure as the membrane was coated on the electrode surface. MET and DP responses of the prepared GO/PI composite electrode were investigated by Differential Pulse Voltammetry (DPV) technique. Linearity was obtained over a concentration range of 85-105 µM for MET (R2 = 0.9976). For DP analysis, the linearity was also monitored over a concentration range of 85-105 µM (R2=0.9988). The detection limits of GO/PI modified electrode were approximately 13.45×10−5 M and 9.61×10−5 M for MET and DP, respectively. The prepared GO/PI composite modified electrode exhibited good repeatability, wide linear range and sensitivity for MET and DP. The obtained results indicated that while uric acid (UA) is present in the medium, GO/PI composite can be used as an excellent membrane in the design of voltammetric sensors to analyze MET and DP simultaneously.
Anahtar Kelime:

Grafen Oksit/Poliimid Temelli Biyosensör Kullanarak Melatonin ve Dopaminin Voltametrik Analizi

Öz:
Bu araştırmada, melatonin (MET) ve dopaminin (DP) eş zamanlı analizi için, Pt elektrodun modifikasyonu ile grafen oksit/poliimit (GO/PI) kompozit elektrot hazırlanmıştır. İlk olarak, GO/PI kompozit yapısı, 2,6-diaminopiridin temelli PI ve % 5 GO'den sentezlenmiştir. Daha sonra membran olarak elde edilen kompozit yapı elektrot yüzeyi üzerine kaplanmıştır. Hazırlanan GO/PI kompozit elektrodunun MET ve DP yanıtları Diferansiyel Puls Voltametri (DPV) tekniği ile araştırılmıştır. MET ölçümleri için doğrusallık 85- 105 µM (R2=0.9976) konsantrasyon aralığında elde edilmiştir. DP analizi için de doğrusallık 85-105 µM konsantrasyon aralığında izlenmiştir (R2=0.9988). GO/PI ile modifiye edilmiş elektrodun tayin limitleri, MET ve DP için sırasıyla yaklaşık 13.45x10−5 M ve 9.61x10−5 M’dı. Hazırlanan GO/PI kompozit modifiye elektrot, MET ve DP için iyi tekrarlanabilirlik, geniş doğrusal aralık ve hassasiyet sergilemiştir. Elde edilen sonuçlar, GO/PI kompozitinin ortamda ürik asit (UA) varlığında, MET ve DP’i eş zamanlı olarak analiz etmek için mükemmel bir membran olarak kullanılabileceğini göstermiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Amjadi, M., Manzoori, J. L., Hallaj, T., Sorouraddin, M. H. (2014). Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchimica Acta, 181(5), 671-677.
  • Apetrei, I. M., Apetrei, C. (2016). Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical product. International Journal of Nanomedicine, 11, 1859-1866.
  • Bagheri, H., Afkhami, A., Hashemi, P., Ghanei, M. (2015). Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Advances, 5(28), 21659-21669.
  • Cai, J., Ma, L., Niu, H., Zhao, P., Lian, Y., Wang, W. (2013). Near infrared electrochromic naphthalene-based polyimides containing triarylamine: Synthesis and electrochemical properties. Electrochimica Acta, 112, 59-67.
  • Chen, L. (2018). An Amperometric Sensitive Hydrogen Peroxide Sensor Based on a Silver Nanoparticle-Doped Polyimide-Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 13, 10961-10972.
  • Choi, S., Kim, S., Kim, I. (2016). Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Materials, 8, e315.
  • Compton, O., Nguyen, S. (2010). Graphene Oxide, Highly Reduced Graphene Oxide and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small (Weinheim an der Bergstrasse, Germany), 6, 711-723.
  • Dai, W., Yu, J., Wang, Y., Song, Y., Bai, H., Nishimura, K., Liao, H., Jiang, N. (2014). Enhanced thermal and mechanical properties of polyimide/graphene composites. Macromolecular Research, 22(9), 983-989.
  • Ekinci, E., Köytepe, S., Paşahan, A., Seckin, T. (2006). Preparation and characterization of an aromatic polyimide and its use as a selective membrane for H2O2. Turkish Journal of Chemistry, 30, 277-285.
  • Escriva, L., Manyes, L., Barbera, M., Martinez-Torres, D., Meca, G. (2016). Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry. Journal of Insect Physiology, 86, 48-53.
  • Fang, B., Liu, H., Wang, G., Zhou, Y., Jiao, S., Gao, X. (2007). Preparation of poly(9-aminoacridine)-modified electrode and its application in the determination of dopamine and ascorbic acid simultaneously. Journal of Applied Polymer Science, 104(6), 3864-3870.
  • Hardeland, R. (2012). Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. Scientific World Journal, 2012, 640389.
  • Hardeland, R., Madrid, J. A., Tan, D. X., Reiter, R. J. (2012). Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. Journal of Pineal Research, 52(2), 139-166.
  • Hsiao, S., Liou, G., Kung, Y., Pan, H., Kuo, C. (2009). Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units. European Polymer Journal, 45(8), 2234-2248.
  • Jia, L., Zhou, Y., Jiang, Y., Zhang, A., Li, X., Wang, C. (2016). A novel dopamine sensor based on Mo doped reduced graphene oxide/polyimide composite membrane. Journal of Alloys and Compounds, 685, 167-174.
  • Khajehsharifi, H., Pourbasheer, E., Tavallali, H., Sarvi, S., Sadeghi, M. (2017). The comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samples. Arabian Journal of Chemistry, 10, S3451-S3458.
  • Kim, S. C., Lee, H., Jeong, H. M., Kim, B. K., Kim, J. H., Shin, C. M. (2010). Effect of Pyrene Treatment on the Properties of Graphene/Epoxy Nanocomposites. Macromolecular Research, 18, 1125-1128.
  • Kim, Y., Bong, S., Kang, Y. J., Yang, Y., Mahajan, R. K., Kim, J. S., Kim, H. (2010). Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes. Biosensors and Bioelectronics, 25, 2366–2369.
  • Kumar, N., Sharma, R., Goyal, R. (2016). Nanopalladium grained polymer nanocomposite based sensor for the sensitive determination of Melatonin. Electrochimica Acta, 211, 18-26.
  • Kvetnoy, I. M., Ingel, I. E., Kvetnaia, T. V., Malinovskaya, N. K., Rapoport, S. I., Raikhlin, N. T.,… Yuzhakov, V. V. (2002). Gastrointestinal melatonin: cellular identification and biological role. Neuro Endocrinology letters, 23(2), 121-132.
  • Lau, K. S. Y. (2014). High-Performance Polyimides and High Temperature Resistant Polymers (Chapter 10). In H. Dodiuk & S. H. Goodman (Eds.), Handbook of Thermoset Plastics (Third Edition) (pp. 297-424). Boston: William Andrew Publishing.
  • Lee, C., Wei, X., Kysar, J., Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (New York, N.Y.), 321, 385-388.
  • Liu, B., Ouyang, X., Ding, Y., Luo, L., Xu, D., Ning, Y. (2016). Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta, 146, 114-121.
  • Lu, J., Lau, C., Lee, M., Kai, M. (2002). Simple and convenient chemiluminescent method for the determination of melatonin. Analytica Chimica Acta, 455, 193-198.
  • Manikandan, P. N., Dharuman, V. (2017). Electrochemical Simultaneous Sensing of Melatonin, Dopamine and Acetaminophen at Platinum Doped and Decorated Alpha Iron Oxide. Electroanalysis, 29(6), 1524-1531.
  • Martins, L. G., Khalil, N. M., Mainardes, R. M. (2017). Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly (lactic acid) nanoparticles. Journal of Pharmaceutical Analysis, 7(6), 388-393.
  • McMullan, C. J., Schernhammer, E. S., Rimm, E. B., Hu, F. B., Forman, J. P. (2013). Melatonin secretion and the incidence of type 2 diabetes. JAMA, 309(13), 1388-1396.
  • Molaakbari, E., Mostafavi, A., Beitollahi, H. (2015). Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sensors and Actuators B: Chemical, 208, 195-203.
  • Paşahan, A., Köytepe, S., Ekinci, E. (2011). Synthesis, Characterization of a New Organosoluble Polyimide and Its Application in Development of Glucose Biosensor. Polymer-Plastics Technology and Engineering, 50, 1239-1246.
  • Reddy, S., Kumara, S., Jayadevappa, H. (2012). CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochimica Acta, 61, 78-86.
  • Sánchez-Barceló, E. J., Cos, S., Mediavilla, D., Martínez-Campa, C., González, A., Alonso-Gonzalez, C. (2005). Melatonin-estrogen interactions in breast cancer. Journal of pineal research, 38, 217-222.
  • Shen, X., Xia, X., Du, Y., Wang, C. (2017). Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol. Frontiers of Materials Science, 11, 262–270.
  • Siu, S. W., Lau, K. W., Tam, P. C., Shiu, S. Y. (2002). Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate, 52(2), 106-122.
  • Smajdor, J., Piech, R., Pięk, M. & Paczosa-Bator, B. (2017). Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination. Journal of Electroanalytical Chemistry, 799, 278-284.
  • Soltani, N., Tavakkoli, N., Shahdost-Fard, F., Salavati, H., Abdoli, F. (2019). A carbon paste electrode modified with Al2O3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen. Microchimica Acta, 186(8), 540.
  • Tarocco, A., Caroccia, N., Morciano, G., Wieckowski, M. R., Ancora, G., Garani, G., Pinton, P. (2019). Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death & Disease, 10(4), 317.
  • Wang, H. Y., Sun, Y., Tang, B. (2002). Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta, 57(5), 899-907.
  • Wang, Y., Yang, X., Hou, C., Zhao, M., Li, Z., Meng, Q., Liang, C. (2019). Fabrication of MnOx/Ni(OH)2 electro-deposited sulfonated polyimides/graphene nano-sheets membrane and used for electrochemical sensing of glucose. Journal of Electroanalytical Chemistry, 837, 95-102.
  • Wightman, R. M., May, L. J., Michael, A. C. (1988). Detection of dopamine dynamics in the brain. Analytical Chemistry, 60(13), 769A-779A.
  • Ye, N., Gao, T., Li, J. (2014). Hollow fiber-supported graphene oxide molecularly imprinted polymers for the determination of dopamine using HPLC-PDA. Analytical Methods, 6, 7518-7524.
  • Yoonessi, M., Scheiman, D. A., Dittler, M., Peck, J. A., Ilavsky, J., Gaier, J. R., Meador, M. A. (2013). High-temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites. Polymer, 54(11), 2776-2784.
  • Zhang, D., Li, L., Ma, W., Chen, X., Zhang, Y. (2017). Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Materials Science and Engineering: C, 70, 241-249.
  • Zhang, Y., Fan, W., Huang, Y., Zhang, C., Liu, T. (2015). Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors. RSC Advances, 5(2), 1301-1308.
APA güngör ö, PAŞAHAN A, Aksoy Erden B, Koytepe S, Seckin T (2020). VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. , 367 - 382. doi: 10.33715/inonusaglik.736510
Chicago güngör öznur,PAŞAHAN Aziz,Aksoy Erden Büşra,Koytepe Suleyman,Seckin Turgay VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. (2020): 367 - 382. doi: 10.33715/inonusaglik.736510
MLA güngör öznur,PAŞAHAN Aziz,Aksoy Erden Büşra,Koytepe Suleyman,Seckin Turgay VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. , 2020, ss.367 - 382. doi: 10.33715/inonusaglik.736510
AMA güngör ö,PAŞAHAN A,Aksoy Erden B,Koytepe S,Seckin T VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. . 2020; 367 - 382. doi: 10.33715/inonusaglik.736510
Vancouver güngör ö,PAŞAHAN A,Aksoy Erden B,Koytepe S,Seckin T VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. . 2020; 367 - 382. doi: 10.33715/inonusaglik.736510
IEEE güngör ö,PAŞAHAN A,Aksoy Erden B,Koytepe S,Seckin T "VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR." , ss.367 - 382, 2020. doi: 10.33715/inonusaglik.736510
ISNAD güngör, öznur vd. "VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR". (2020), 367-382. https://doi.org/doi: 10.33715/inonusaglik.736510
APA güngör ö, PAŞAHAN A, Aksoy Erden B, Koytepe S, Seckin T (2020). VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8(2), 367 - 382. doi: 10.33715/inonusaglik.736510
Chicago güngör öznur,PAŞAHAN Aziz,Aksoy Erden Büşra,Koytepe Suleyman,Seckin Turgay VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi 8, no.2 (2020): 367 - 382. doi: 10.33715/inonusaglik.736510
MLA güngör öznur,PAŞAHAN Aziz,Aksoy Erden Büşra,Koytepe Suleyman,Seckin Turgay VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, vol.8, no.2, 2020, ss.367 - 382. doi: 10.33715/inonusaglik.736510
AMA güngör ö,PAŞAHAN A,Aksoy Erden B,Koytepe S,Seckin T VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi. 2020; 8(2): 367 - 382. doi: 10.33715/inonusaglik.736510
Vancouver güngör ö,PAŞAHAN A,Aksoy Erden B,Koytepe S,Seckin T VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi. 2020; 8(2): 367 - 382. doi: 10.33715/inonusaglik.736510
IEEE güngör ö,PAŞAHAN A,Aksoy Erden B,Koytepe S,Seckin T "VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR." İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8, ss.367 - 382, 2020. doi: 10.33715/inonusaglik.736510
ISNAD güngör, öznur vd. "VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR". İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi 8/2 (2020), 367-382. https://doi.org/doi: 10.33715/inonusaglik.736510