Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser

Yıl: 2020 Cilt: 33 Sayı: 2 Sayfa Aralığı: 510 - 523 Metin Dili: İngilizce DOI: 10.35378/gujs.524964 İndeks Tarihi: 04-11-2020

Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser

Öz:
The power-to-gas technology is considered to provide the means of storing surplus renewableenergy in the form of synthetic natural gas. The study analyses the P2G system with respect tothe three main components i.e. electrolysers (especially solid oxide electrolysers that have ahigher operating temperature), the methanation reactor and the synthetic methane injectionsystem. Efficiency of the individual components is evaluated with three different configurationsemploying heat recovery at various sections of the P2G system. The model has been studied inthe ANSYS environment. The configurations are finally evaluated for an optimized solution asregards the efficiency of the entire system and the quality of the produced synthetic.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Dou, Y., Sun, L., Ren J., and Dong, L., "Opportunities and Future Challenges in Hydrogen Economy for Sustainable Development”, Hydrogen Economy, pp. 277-305, (2017).
  • [2] Dickinson, R. R., Battye, D. L., Linton, V. M., & Ashman, P. J., “Alternative carriers for remote renewable energy sources using existing CNG infrastructure”, International Journal of Hydrogen Energy, 35(3): 1321-1329, (2010).
  • [3] Hashimoto, K., Habazaki, H., Yamasaki, M., Meguro, S., Sasaki, T., Katagiri, H., Matsui T., Fujimura K., Izumiya K., Kumagaid N., Akiyama, E., “Advanced materials for global carbon dioxide recycling”, Materials Science and Engineering: A, 304: 88-96, (2001).
  • [4] Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F., “Recent advances in methanation catalysts for the production of synthetic natural gas”, RSC Advances, 5(29): 22759-22776, (2015).
  • [5] Tabkhi, F., Azzaro-Pantel, C., Pibouleau, L., & Domenech, S., “A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection”, International Journal of Hydrogen Energy, 33(21): 6222-6231, (2008).
  • [6] Haeseldonckx, D., “Concrete transition issues towards a fully-fledged use of hydrogen as an energy carrier”, KU Leuven, Heverlee, 108-121, (2009).
  • [7] Maroufmashat, A., & Fowler, M., “Transition of future energy system infrastructure; through powerto-gas pathways”, Energies, 10(8): 1089-1098, (2017).
  • [8] Gondal I.A., “Hydrogen integration in power-to-gas networks”, International Journal of Hydrogen Energy, 44(3): 1803-15, (2019).
  • [9] Gondal, I.A., “Offshore renewable energy resources and their potential in a green hydrogen supply chain through power-to-gas”, Sustainable Energy & Fuels, 3(6):1468-89, (2019).
  • [10] Gondal, I.A., Masood, S.A., "Synergies in offshore wind and oil industry for carbon capture and utilization", Greenhouse Gases: Science and Technology, 9(5): 856-871, (2019).
  • [11] Jarvis, S M., Samsatli, S., "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis", Renewable and Sustainable Energy Reviews, 85, 46-68, (2018).
  • [12] Carriveau, R., & Ting, D. S. K., “Methane and hydrogen for energy storage (Vol. 2)”, IET, 248-256, (2016).
  • [13] Saba, S.M., Müller, M., Robinius, R., & Stolten, D., "The investment costs of electrolysis–a comparison of cost studies from the past 30 years”, International Journal of Hydrogen Energy, 324- 335, (2017).
  • [14] Götz, M., Jonathan, L., Mörs, F., Koch, A.M., Graf, F., Bajohr, S., Reimert, R., and Kolb, T., "Renewable Power-to-Gas: A technological and economic review", Renewable Energy, 85: 1371- 1390, (2016).
  • [15] Hacker, B., Gesikiewicz, P. and Smolinka, T., "Arbeitspaket 1b: Systemoptimierung und Betriebsführung der PEM-Elektrolyse", Energie-Wasser-Praxis, 125-138, (2015).
  • [16] Reytier, M., Iorio, S., Chatroux, A., Petitjean, M., Cren,J., Jean, M., Aicart,J., and Mougin, J., "Stack performances in high temperature steam electrolysis and co-electrolysis", International Journal of Hydrogen Energy, 40(35): 11370-11377, (2015).
  • [17] Jean, M., Baurens, P., and Bouallou, C., "Parametric study of an efficient renewable power-tosubstitute-natural-gas process including high-temperature steam electrolysis", International Journal of Hydrogen Energy, 39(30): 17024-17039, (2014).
  • [18] Giglio, E., Lanzini, A., Santarelli, M., and Leone, P., "Synthetic natural gas via integrated hightemperature electrolysis and methanation: Part I—Energy performance", Journal of Energy Storage, 1: 22-37, (2015).
  • [19] Götz, M., Jonathan, L., Mörs, F., Koch, A.M., Graf, F., Bajohr, S., Reimert, R., and Kolb, T., "Renewable Power-to-Gas: A technological and economic review", Renewable Energy, 85: 1371- 1390, (2016).
  • [20] Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B. and Stolten, D., "Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany". International Journal of Hydrogen Energy, 40(12): 4285-4294, (2015).
  • [21] Bensmann, B., Hanke-Rauschenbach, R., Müller-Syring, G., Henel, M., and Sundmacher, K., "Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications", Applied Energy, 167: 107-124, (2016).
  • [22] Frontera, P., Macario, A., Ferraro, M., and Antonucci, P., "Supported catalysts for CO2 methanation: a review", Catalysts, 7(2): 59-67, (2017).
  • [23] Parra, D., and Martin K. P., "Techno-economic implications of the electrolyser technology and size for power-to-gas systems", International Journal of Hydrogen Energy, 41(6): 3748-3761, (2016).
  • [24] Kopp, M., Coleman, D., Stiller, C., Scheffer, K., Aichinger, J., and Scheppat, B., "Energiepark Mainz: Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis", International Journal of Hydrogen Energy, 42(19): 13311-13320, (2017).
  • [25] Kötter, E., Schneider,L., Sehnke, F., Ohnmeiss, K., and Schröer, R., "Sensitivities of power-to-gas within an optimised energy system", Energy Procedia, 73 : 190-199, (2015).
  • [26] Jentsch, M., Trost, T., and Sterner, M., "Optimal use of power-to-gas energy storage systems in an 85% renewable energy scenario", Energy Procedia, 46: 254-261, (2014).
  • [27] Bailera, M., Lisbona, P., and Romeo, L.M., "Power to gas-oxyfuel boiler hybrid systems", International Journal of Hydrogen Energy, 40(32): 10168-10175, (2015).
  • [28] Bailera, M., Lisbona, P., and Romeo, L.M., and Espatolero, S., "Power to gas–biomass oxycombustion hybrid system: energy integration and potential applications", Applied Energy, 167: 221-229, (2016).
  • [29] Gillessen, B., Heinrichs H. U., Stenzel, P., and Linssen, J., "Hybridization strategies of power-to-gas systems and battery storage using renewable energy", International Journal of Hydrogen Energy 42(19): 13554-13567, (2017).
  • [30] Kezibri, N., and Bouallou, C., "Conceptual design and modelling of an industrial scale power to gasoxy-combustion power plant", International Journal of Hydrogen Energy, 42(30): 19411-19419, (2017).
  • [31] Bailera, M., Kezibri N., Romeo L.M., Espatolero S., Lisbona P., Bouallou C., "Future applications of hydrogen production and CO2 utilization for energy storage: Hybrid Power to GasOxycombustion power plants", International Journal of Hydrogen Energy, 42(19): 13625-13632, (2017).
  • [32] Gowtham, R., "Design and analysis of concrete building without insulation and with insulation using ANSYS 15 software", 212-220, (2019).
  • [33] ElGhazi, Y., Hamza, N., and Dade‐Robertson, M., "Modelling and simulation of integrated responsive solar-shading with double skin facades in hot arid climates", 4th International Conference on Building Simulation and Optimization (BSO 2018), Newcastle University, 117-131, (2018).
  • [34] Nejat, P., Jomehzadeh F., Hussen H.M., Calautit J.K., and Abd Majid M.Z., "Application of wind as a renewable energy source for passive cooling through wind catchers integrated with wing walls", Energies, 11(10): 2536-2545, (2018).
  • [35] Lau, S., Zhao, Y., Lau, S. S. Y., Yuan, C., and Shabunko, V., "An investigation on ventilation of building-integrated photovoltaics system using numerical modeling", Journal of Solar Energy Engineering, 142-156, (2020).
APA Gondal I (2020). Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. , 510 - 523. 10.35378/gujs.524964
Chicago Gondal Irfan Ahmad Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. (2020): 510 - 523. 10.35378/gujs.524964
MLA Gondal Irfan Ahmad Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. , 2020, ss.510 - 523. 10.35378/gujs.524964
AMA Gondal I Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. . 2020; 510 - 523. 10.35378/gujs.524964
Vancouver Gondal I Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. . 2020; 510 - 523. 10.35378/gujs.524964
IEEE Gondal I "Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser." , ss.510 - 523, 2020. 10.35378/gujs.524964
ISNAD Gondal, Irfan Ahmad. "Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser". (2020), 510-523. https://doi.org/10.35378/gujs.524964
APA Gondal I (2020). Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science, 33(2), 510 - 523. 10.35378/gujs.524964
Chicago Gondal Irfan Ahmad Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science 33, no.2 (2020): 510 - 523. 10.35378/gujs.524964
MLA Gondal Irfan Ahmad Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science, vol.33, no.2, 2020, ss.510 - 523. 10.35378/gujs.524964
AMA Gondal I Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science. 2020; 33(2): 510 - 523. 10.35378/gujs.524964
Vancouver Gondal I Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science. 2020; 33(2): 510 - 523. 10.35378/gujs.524964
IEEE Gondal I "Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser." Gazi University Journal of Science, 33, ss.510 - 523, 2020. 10.35378/gujs.524964
ISNAD Gondal, Irfan Ahmad. "Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser". Gazi University Journal of Science 33/2 (2020), 510-523. https://doi.org/10.35378/gujs.524964