Yıl: 2020 Cilt: 32 Sayı: 1 Sayfa Aralığı: 15 - 32 Metin Dili: Türkçe DOI: 10.7240/jeps.571001 İndeks Tarihi: 22-12-2020

İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi

Öz:
İklim değişikliği ile birlikte son yıllarda Akdeniz Havzası’nda orman yangınlarının sayısında ciddi bir artış gözlenmiştir. Gerçekleşen bu yangınlar ormanlara doğal felaketlerden daha çok zarar vermektedir. Çıkan yangınların bir kısmı artan kurak hava koşulları nedeniyle do-ğal yollardan meydana gelirken, diğer bir kısmı ise ihmal ya da kasıt sonucunda oluşan ve büyük ölçüde iklim elemanlarının (sıcaklık, ya-ğış, rüzgâr, nem vb.) etkisiyle büyüklüğü değişen yangınlar olarak ortaya çıkmaktadır. Orman yangınlarının öngörülmesinde kuraklık ile orman yangınları arasındaki ilişkiyi ele alan farklı indisler kullanılmaktadır. Bu çalışmada, olası orman yangınlarını öngörmek amacıyla yaygın olarak kullanılan yangın indislerinden; Haines İndisi (HI), Kanada Orman Yangın Hava İndisi (FWI), Keetch-Byram Kuraklık İn-disi (KBDI), F İndisi detaylı olarak, Entegre Yangın İndisi (IFI), McArthur Mark 5 (Mk5) Orman ve Mark 4 (Mk4) Otlak Yangın Tehlike İndisi (McArthur Mark 5 (Mk5)), Fosberg Yangın Hava İndisi (FFWI), Nesterov İndisi (NI) ve Angström İndisi (AI) kısaca ele alınmıştır. İklim değişikliğinin orman yangınlarına etkisiyle ilgili yapılan çalışmalar kapsamında Antalya, Çanakkale ve Muğla Orman Bölge Müdür-lüklerine bağlı orman arazilerinde 2008 ve 2009 yıllarında çıkan yangınlar Kanada Orman Yangın Hava İndisi (FWI) kullanılarak incelen-miştir. Sonuçlar 2008 ve 2009 yılı yangın verileri ile tutarlılık göstermiştir ve FWI değerleri bu yıllar için yangın riskini öngörmede başa-rılı bulunmuştur.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Tatli, H., & Türkeş, M. (2014). Climatological evaluation of H aines forest fire weather index over the M editerranean B asin. Meteorological Applications, 21(3), 545-552.
  • [2] Werth, J., & Werth, P. (1998). Haines Index climatology for the western United States. Fire management notes (USA).
  • [3] Jenkins, M. A. (2002). An examination of the sensitivity of numerically simulated wildfires to low-level atmospheric sta-bility and moisture, and the consequences for the Haines In-dex. International Journal of Wildland Fire, 11(4), 213-232.
  • [4] McCaw, L., Marchetti, P., Elliott, G., & Reader, G. (2007). Bushfire weather climatology of the Haines Index in sout-hwestern Australia. Australian Meteorological Maga-zine, 56(2).
  • [5] Winkler, J. A., Potter, B. E., Wilhelm, D. F., Shadbolt, R. P., Piromsopa, K., & Bian, X. (2007). Climatological and sta-tistical characteristics of the Haines Index for North Ame-rica. International Journal of Wildland Fire, 16(2), 139-152
  • [6] Trouet, V., Taylor, A. H., Carleton, A. M., & Skinner, C. N. (2009). Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon. Theoretical and Applied Climatology, 95(3-4), 349-360.
  • [7] Peace, M., McCaw, L., & Mills, G. (2012). Meteorological dynamics in a fire environment; a case study of the Layman prescribed burn in Western Australia. Australian Meteoro-logical and Oceanographic Journal, 62(3), 127.
  • [8] Barberà, M. J., Niclòs, R., Estrela, M. J., & Valiente, J. A. (2015). Climatology of the stability and humidity terms in the Haines Index to improve the estimate of forest fire risk in the Western Mediterranean Basin (Valencia region, Spain). Inter-national Journal of Climatology, 35(7), 1212-1223.
  • [9] Cardil, A., Molina, D. M., Ramirez, J., & Vega-García, C. (2013). Trends in adverse weather patterns and large wildland fires in Aragón (NE Spain) from 1978 to 2010. Natural Ha-zards and Earth System Sciences, 13(5), 1393-1399.
  • [10] Johnson EA, Miyanishi K. (2001). Forest Fires: Behavior and Ecological Effects. Academic Press: San Diego, CA.
  • [11] Ruffault, J., Moron, V., Trigo, R. M., & Curt, T. (2017). Da-ily synoptic conditions associated with large fire occurrence in Mediterranean France: evidence for a wind‐driven fire re-gime. International Journal of Climatology, 37(1), 524-533.
  • [12] Türkeş, M., Tatlı, H., Altan, G., Öztürk, M. Z. (2011a). Analy-sis of forest fires for the year of 2010 in Çanakkale and Muğla with the Keetch-Byram drought index. In: Proceedings of the National Geographical Congress with International Partici-pitation (CD-R), ISBN 978.975.6686-04-1, 7-10 September 2011, Türk Coğrafya Kurumu – İstanbul University.
  • [13] Altan, G., Türkeş, M., Tatlı, H. (2011). Çanakkale ve Muğla 2009 yılı orman yangınlarının Keetch-Byram Kuraklık İndisi ile klimatolojik ve meteorolojik analizi. In: 5th Atmospheric Science Symposium Proceedings Book: 263-274. Istanbul Te-chnical University, 27-29 April 2011, Istanbul. Turkey.
  • [14] Altan, G. (2011). Muğla ve Çanakkale İllerinde 2000-2008 döneminde gerçekleşen büyük orman yangınlarının klimato-lojik ve meteorolojik analizi. Çanakkale Onsekiz Mart Üni-versitesi, Sosyal Bilimler Enstitüsü, Yayımlanmamış Yüksek Lisans Tezi.
  • [15] Yamak, Ç. (2006). Investigation over a national meteorologi-cal fire danger approach for Turkey with geographic infor-mation systems. A Thesis Submitted to the Graduate School of Natural and Applied Sciences of Middle East Techinical University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geodetic and Geographic In-formation Technologies. 142 p.
  • [16] Pausas, J. G., & Vallejo, V. R. (1999). The role of fire in Euro-pean Mediterranean ecosystems. In Remote sensing of large wildfires (pp. 3-16). Springer, Berlin, Heidelberg.
  • [17] Pausas, J. G. (2004). Changes in fire and climate in the eas-tern Iberian Peninsula (Mediterranean basin). Climatic change, 63(3), 337-350.
  • [18] Urbieta IR, Zavala G, Bedia J, Gutie ́rrez JM, San Miguel-A-yanz J, Camia A, Keeley JE, Moreno JM. (2015). Fire activity as a function of fire–weather seasonal severity and antece-dent climate across spatial scales in southern Europe and Pa-cific western USA. Environmental Research Letters, 10(11), 114013.
  • [19] Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International journal of wild-land fire, 18(5), 483-507.
  • [20] Lagerquist, R., Flannigan, M. D., Wang, X., & Marshall, G. A. (2017). Automated prediction of extreme fire weather from synoptic patterns in northern Alberta, Canada. Cana-dian Journal of Forest Research, 47(9), 1175-1183.
  • [21] Gillett, N. P., Weaver, A. J., Zwiers, F. W., & Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18).
  • [22] Wang, X., Thompson, D. K., Marshall, G. A., Tymstra, C., Carr, R., & Flannigan, M. D. (2015). Increasing frequency of extreme fire weather in Canada with climate change. Clima-tic Change, 130(4), 573-586.
  • [23] Mhawej, M., Faour, G., Abdallah, C., & Adjizian-Gerard, J. (2016). Towards an establishment of a wildfire risk system in a Mediterranean country. Ecological informatics, 32, 167-184.
  • [24] Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21 st century. Mitigation and adaptation strategies for global change, 11(4), 847-859.
  • [25] Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Up-dated world map of the Köppen-Geiger climate classifica-tion. Hydrology and earth system sciences discussions, 4(2), 439-473.
  • [26] Türkes ̧ M. (2016). Genel Klimatoloji: Atmosfer, Hava ve İk-limin Temelleri. İstanbul, Türkiye: Kriter Yayınevi.
  • [27] Türkeş, M. (2010). Klimatoloji ve meteoroloji. Kriter Yayı-nevi.
  • [28] Zittis, G., & Hadjinicolaou, P. (2017). The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA‐CORDEX domain. In-ternational Journal of Climatology, 37(10), 3847-3862.
  • [29] Schroter, D.; Cramer, W.; Leemans, R.; Prentice, I. C.; Ara-ujo, M. B.; Arnell, N. W.; Bondeau, A.; Bugmann, H.; Car-ter, T. R.; Gracia, C. A.; de la Vega-Leinert, A. C.; Erhard, M.; Ewert, F.; Glendining, M.; House, J. I.; Kankaanpaa, S.; Klein, R. J. T.; Lavorel, S.; Lindner, M.; Metzger, M. J.; Me-yer, J.; Mitchell, T. D.; Reginster, I.; Rounsevell, M.; Sabate, S.; Sitch, S.; Smith, B.; Smith, J.; Smith, P.; Sykes, M. T.; Thonicke, K.; Thuiller, W.; Tuck, G.; Zaehle, S.; Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310(5752): 1333-1337.
  • [30] Westerling, A. L., Hidalgo H. G., Cayan D. R., and Swetnam T. W. (2006). Warming and earlier spring increase western U. S. forest wildfire activity. Science 313(5789):940–943.
  • [31] Bedia J., Golding N., Casanueva A., Iturbide M., Buontempo C., & Gutiérrez J. M. (2017). Seasonal predictions of Fire Weather Index: Paving the way for their operational applica-bility in Mediterranean Europe. Climate Services.
  • [32] Abatzoglou, John T., & Kolden, Crystal A. (2013). Relations-hips between climate and macroscale area burned in the wes-tern United States. International Journal of Wildland Fire22(7):1003-1020.
  • [33] Blackwell, B., M.C. Feller, and R. Trowbridge. (1992). Con-ver – sionof dense lodge pole pine stands in west-central Bri-tish Columbia into young lodge pole pine plantations using prescribed fire. 1. Biomass consumption during burning tre-atments. Canadian Journal of Forest Research 22: 572 – 581.
  • [34] Valette, J. C., Gomendy, V., Maréchal, J., Houssard, C., & Gillon, D. (1994). Heat-transfer in the soil during very low-intensity experimental fires-the role of duff and soil-mo-isture content. International Journal of Wildland Fire, 4(4), 225-237.
  • [35] Dimitrakopoulos AP, Mitsopoulos ID, & Gatoulas K. (2010). Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel type. International Journal of Wild-land Fire 19: 29–34.
  • [36] Pausas, J. G., & Fernández-Muñoz, S. (2012). Fire regime changes in the Western Mediterranean Basin: from fuel-limi-ted to drought-driven fire regime. Climatic change, 110(1-2), 215-226.
  • [37] Turco M, Llasat M-C, von Hardenberg J, & Provenzale A (2014). Climate change impacts on wildfires in a Mediterra-nean environment. Climatic Change125:369–380
  • [38] Cardil, A., Eastaugh, C. S., & Molina, D. M. (2015). Extreme temperature conditions and wildland fires in Spain. Theoreti-cal and applied climatology, 122(1-2), 219-22.
  • [39] Marcos, R., Turco, M., Bedía, J., Llasat, M. C., & Provenzale, A. (2015). Seasonal predictability of summer fires in a Me-diterranean environment. International journal of wildland fire, 24(8), 1076-1084.
  • [40] Kum G., & Sönmez M.E. (2016). Determination of Meteo-rological Forest Fire Risks in Mediterranean Climate of Tur-key. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilim-leri Dergisi, 19(2), 181-192.
  • [41] Türkeş, M., & Altan, G. (2012). Analysis of the year 2008 fi-res in the forest lands of the Muğla Regional Forest Service by using drought indices. Journal of Human Sciences, 9(1), 912-931.
  • [42] Sarris, D., Christopoulou, A., Angelonidi, E., Koutsias, N., Fulé, P. Z., & Arianoutsou, M. (2014). Increasing extremes of heat and drought associated with recent severe wildfires in southern Greece. Regional environmental change, 14(3), 1257-1268.
  • [43] Bedia J, Herrera S, Gutiérrez J M, Benali A, Brands S, Mota B and Moreno J M. (2015). Global patterns in the sensiti-vity of burned area to fire–weather: implications for climate change Agric. Forest Meteorol.214-215 369–7.
  • [44] Knorr W., Dentener F., Hantson S., Jiang L., Klimont Z., & Arneth A. (2016). Air quality impacts of European wildfire emissions in a changing climate.
  • [45] Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I., & Hammer, R. B. (2007). Hu-man influence on California fire regimes. Ecological applica-tions, 17(5), 1388-1402.
  • [46] Ager, A. A., Preisler, H. K., Arca, B., Spano, D., & Salis, M. (2014). Wildfire risk estimation in the Mediterranean area. Environmetrics, 25(6), 384-396.
  • [47] Haines, D. A. (1989). A lower atmosphere severity index for wildlife fires. National Weather Digest, 13, 23-27.
  • [48] Werth, P., & Ochoa, R. (1993). The evaluation of Idaho wil-dfire growth using the Haines Index. Weather and Forecas-ting, 8(2), 223-234.
  • [49] Beverly, J. L., & Wotton, B. M. (2007). Modelling the pro-bability of sustained flaming: predictive value of fire weat-her index components compared with observations of site weather and fuel moisture conditions. International Journal of Wildland Fire, 16(2), 161-173.
  • [50] Dimitrakopoulos, A. P., Bemmerzouk, A. M., & Mitsopou-los, I. D. (2011). Evaluation of the Canadian fire weather in-dex system in an eastern Mediterranean environment. Meteo-rological Applications, 18(1), 83-93.
  • [51] Chelli S., Maponi P., Campetella G., Monteverde P., Foglia M., Paris E., Lolis A., & Panagopoulos T. (2015). Adapta-tion of the Canadian fire weather index to Mediterranean fo-rests. Natural Hazards, 75(2), 1795-1810.
  • [52] Carvalho, A., Flannigan, M. D., Logan, K., Miranda, A. I., & Borrego, C. (2008). Fire activity in Portugal and its relati-onship to weather and the Canadian Fire Weather Index Sys-tem. International Journal of Wildland Fire, 17(3), 328-338.
  • [53] Van Wagner, C. E., & Forest, P. (1987). Development and structure of the canadian forest fireweather index system. In Can. For. Serv., Forestry Tech. Rep.
  • [54] Canadian Fire Weather Index System (FWI system), https://www.frames.gov/files/6014/1576/1411/FWI-history.pdf.
  • [55] Good, P., Moriondo, M., Giannakopoulos, C., & Bindi, M. (2008). The meteorological conditions associated with ext-reme fire risk in Italy and Greece: relevance to climate model studies. International Journal of Wildland Fire, 17(2), 155-165.
  • [56] Keetch, J. J., & Byram, G. M. (1968). A drought index for fo-rest fire control. Res. Pap. SE-38. Asheville, NC: US Depart-ment of Agriculture, Forest Service, Southeastern Forest Ex-periment Station. 35 p., 38.
  • [57] Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009a). A simple index for assessing fire danger rating. En-vironmental Modelling & Software, 24(6), 764-774.
  • [58] Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009b). A simple index for assessing fuel moisture con-tent. Environmental Modelling & Software, 24(5), 637-646.
  • [59] Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping re-gional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Na-tural Hazards and Risk, 7(5), 1645-1658.
  • [60] Satir, O., Berberoglu, S., & Cilek, A. (2016). Modelling long-term forest fire risk using fire weather index under climate change in Turkey. Applied Ecology and Environmental Rese-arch, 14(4), 537-551.
  • [61] Sirca, C., Salis, M., Arca, B., Duce, P., & Spano, D. (2018). Assessing the performance of fire danger indexes in a Me-diterranean area. iForest-Biogeosciences and Forestry, 11(5), 563.
  • [62] Noble, I. R., Gill, A. M., & Bary, G. A. V. (1980). McArthur’s fire‐danger meters expressed as equations. Australian Jour-nal of Ecology, 5(2), 201-203.
  • [63] Pérez-Sánchez, J., Senent-Aparicio, J., Díaz-Palmero, J. M., & de Dios Cabezas-Cerezo, J. (2017). A comparative study of fire weather indices in a semiarid south-eastern Europe re-gion. Case of study: Murcia (Spain). Science of the Total En-vironment, 590, 761-774.
  • [64] San-Miguel-Ayanz, J., Carlson, J. D., Alexander, M., Tol-hurst, K., Morgan, G., Sneeuwjagt, R., & Dudley, M. (2003). Current methods to assess fire danger potential. In Wildland fire danger estimation and mapping: The role of remote sen-sing data (pp. 21-61).
  • [65] Sirca, C., Spano, D., Duce, P., Delogu, G., Cicalò, G. O., & Viegas, D. X. (2007). Performance of a newly developed in-tegrated fire rating index in Sardinia, Italy. In Proceedings of the 4th International WildLand FireConference. Seville, Spa-in(pp. 13-17).
  • [66] Goodrick, S. L. (2002). Modification of the Fosberg fire we-ather index to include drought. International Journal of Wild-land Fire, 11(4), 205-211.
  • [67] Ganatsas, P., Antonis, M., & Marianthi, T. (2011). Develop-ment of an adapted empirical drought index to the Mediter-ranean conditions for use in forestry. Agricultural and forest meteorology, 151(2), 241-250.
  • [68] Venevsky, S., Thonicke, K., Sitch, S., & Cramer, W. (2002). Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Global Change Biology, 8(10), 984–998. doi:10.1046/j.1365-2486.2002. 00528.x.
  • [69] Angström, A. (1949). Swedish Meteorological Research 1939-1948. Tellus, 1(1), 60–64. doi:10.1111/j.2153-3490. 1949.tb01930.x.
  • [70] Moreno, M. V., Conedera, M., Chuvieco, E., & Pezzatti, G. B. (2014). Fire regime changes and major driving forces in Spain from 1968 to 2010. Environmental Science & Po-licy, 37, 11-22.
  • [71] Türkeş, M., & Altan, G. (2012). Çanakkale’nin 2008 yılı bü-yük orman yangınlarının meteorolojik ve hidroklimatolojik analizi. Coğrafi Bilimler Dergisi, 10(2), 195-218.
  • [72] Wang, X., Wotton, B. M., Cantin, A. S., Parisien, M. A., An-derson, K., Moore, B., & Flannigan, M. D. (2017). cffdrs: an R package for the Canadian forest fire danger rating sys-tem. Ecological Processes, 6(1), 5.
  • [73] Lawson, B. D., & Armitage, O. B. (2008). Weather guide for the Canadian forest fire danger rating system.
APA CALDA B, An N, Turp M, KURNAZ L (2020). İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. , 15 - 32. 10.7240/jeps.571001
Chicago CALDA Burcu,An Nazan,Turp Mustafa Tufan,KURNAZ Levent İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. (2020): 15 - 32. 10.7240/jeps.571001
MLA CALDA Burcu,An Nazan,Turp Mustafa Tufan,KURNAZ Levent İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. , 2020, ss.15 - 32. 10.7240/jeps.571001
AMA CALDA B,An N,Turp M,KURNAZ L İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. . 2020; 15 - 32. 10.7240/jeps.571001
Vancouver CALDA B,An N,Turp M,KURNAZ L İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. . 2020; 15 - 32. 10.7240/jeps.571001
IEEE CALDA B,An N,Turp M,KURNAZ L "İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi." , ss.15 - 32, 2020. 10.7240/jeps.571001
ISNAD CALDA, Burcu vd. "İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi". (2020), 15-32. https://doi.org/10.7240/jeps.571001
APA CALDA B, An N, Turp M, KURNAZ L (2020). İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. International journal of advances in engineering and pure sciences (Online), 32(1), 15 - 32. 10.7240/jeps.571001
Chicago CALDA Burcu,An Nazan,Turp Mustafa Tufan,KURNAZ Levent İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. International journal of advances in engineering and pure sciences (Online) 32, no.1 (2020): 15 - 32. 10.7240/jeps.571001
MLA CALDA Burcu,An Nazan,Turp Mustafa Tufan,KURNAZ Levent İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. International journal of advances in engineering and pure sciences (Online), vol.32, no.1, 2020, ss.15 - 32. 10.7240/jeps.571001
AMA CALDA B,An N,Turp M,KURNAZ L İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. International journal of advances in engineering and pure sciences (Online). 2020; 32(1): 15 - 32. 10.7240/jeps.571001
Vancouver CALDA B,An N,Turp M,KURNAZ L İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi. International journal of advances in engineering and pure sciences (Online). 2020; 32(1): 15 - 32. 10.7240/jeps.571001
IEEE CALDA B,An N,Turp M,KURNAZ L "İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi." International journal of advances in engineering and pure sciences (Online), 32, ss.15 - 32, 2020. 10.7240/jeps.571001
ISNAD CALDA, Burcu vd. "İklim Değişikliğinin Akdeniz Havzası’ndaki Orman Yangınlarına Etkisi". International journal of advances in engineering and pure sciences (Online) 32/1 (2020), 15-32. https://doi.org/10.7240/jeps.571001