Yıl: 2020 Cilt: 6 Sayı: 1 Sayfa Aralığı: 137 - 145 Metin Dili: Türkçe DOI: 10.21324/dacd.540532 İndeks Tarihi: 22-12-2020

Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması

Öz:
Yeniden kullanım potansiyeline sahip olan, endüstriyel atıkların yeni alternatif yöntemlerle değerlendirilmesi oldukça önemlidir.Arıtma tesisi çamurları ve uçucu kül faydalı geri kullanım potansiyeli olduğu bilinen endüstriyel atıklardandır. Bu endüstriyel atıklarınyararlı yeniden kullanımları, çevresel kirliliğin azaltılması, depolama maliyetlerini düşürülmesi, sınırlı olan doğal kaynaklarınkullanımının azaltılması ve yeni nesil malzeme sağlanması ile kuruluşların ve ülkenin ekonomik gelişimine katkı sağlayabilecektir.Üzerine yapı inşa edilen zemin ve kaya ortamların jeolojik kökenleri çok değişken bir yapıya sahiptir ve farklı tipteki jeolojikmalzemeler tasarım açısından farklı çözümler gerektirir. Zayıf zemin şartlarına sahip sahalarda inşa edilecek yapılarda gelenekseltemel inşaatı yöntemleri pahalıya mal olmakta ve ekonomikliğini kaybetmektedir. Bu tür zeminlerde geleneksel yöntemler ile yapılaninşaat maliyetinin yüksek olması, çevre faktörlerinin oluşturduğu sayısız sıkıntılar bulunmaktadır. Günümüzde farklı katkı malzemeleriile zeminlerin nasıl davranış gösterdiği oldukça önem kazanmıştır. Bu çalışmada, endüstriyel atık olan içme suyu arıtma tesisiçamurları ile uçucu kül malzemelerin kumlu zemin ortamında geçirimsizlik davranışları incelenmiştir. Çalışma kapsamında kumzemine, %2, %4, %6, %8, %10, %12, %14, %16, %18, %20, %22 oranlarında ağırlıkça içme suyu arıtma çamuru ve uçucu küleklenmiştir. Hazırlanan karışımların geçirimlilik davranışları, küçük ölçekli model deneyler yardımı ile katkı oranlarına ve zamanabağlı olarak araştırılmıştır. Elde edilen sonuçlara göre, her iki endüstriyel atık malzemelerin de kumlu zeminlerde geçirimsizliğinikayda değer oranda artırdığı görülmüştür. Endüstriyel atık malzemelerin %2 oranında katıldığında 106 ve %22 oranında katıldığındaise 1691 kata varan artışlar tespit edilmiştir.
Anahtar Kelime:

Investigation of Permeability Behavior of Sandy Soils Mixed with Industrial Waste

Öz:
It is very important to evaluate the industrial wastes, which have the potential to be reused with new alternative methods. Treatment plant sludges and fly ash are industrial wastes known to have the potential for beneficial reuse. The useful reuse of these industrial wastes will contribute to the economic development of the organizations and the country by reducing environmental pollution, reducing storage costs, reducing the use of limited natural resources and providing new generation materials. The geological origins of the ground and rock environments on which the structure is constructed have a very variable structure and different types of geological materials require different solutions in terms of design. Conventional foundation construction methods are expensive and lose their economy in the buildings to be constructed in areas with poor ground conditions. In recent years, due to the high cost of construction with traditional methods, the numerous problems caused by environmental factors and the difficulties in overcoming them, the use of on-site soil remediation methods on the poor soil has gained importance. In this study, the impermeability behaviors of sludges and fly ash materials of industrial waste drinking water treatment plant were investigated. Within the scope of the study, drinking water treatment sludge and fly ash were added to sand ground in 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%. The permeability behavior of the prepared mixtures was investigated with the help of small scale model experiments depending on the contribution rates and time. According to the results obtained, it is observed that both industrial waste materials significantly increase the impermeability of sandy soils. Experimental data indicates s that the increases of up to 106 times when industrial waste materials were added at 2% and up to 1691 times when 22% were added.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad T., Ahmad K., Alam M., (2016), Sustainable management of water treatment sludge through 3 ‘R’concept, Journal of Cleaner Production, 124, 1-13.
  • Ahmaruzzaman M., (2010), A review on the utilization of fly ash, Progress in energy and combustion science, 36(3), 327-363.
  • Aldaood A., Bouasker M., Al-Mukhtar M., (2014),Free swell potential of lime-treated gypseous soil, Applied Clay Science, 102, 93- 103.
  • Amin S.K., Hamid E.A., El-Sherbiny S., Sibak H., Abadir M., (2018), The use of sewage sludge in the production of ceramic floor tiles, HBRC Journal, 14(3), 309-315.
  • Bağrıaçık B., Güner E.D., Beycioğlu A., (2019), Atık boru tozunun kum zeminlerin permeabilite değerleri üzerindeki etkileri, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 2(1), 6-13.
  • Basu M., Pande M., Bhadoria P., Mahapatra S., (2009), Potential fly-ash utilization in agriculture: a global review, Progress in Natural Science, 19(10), 1173-1186.
  • Benlalla A., Elmoussaouiti M., Dahhou M., Assafi M., (2015), Utilization of water treatment plant sludge in structural ceramics bricks, Applied Clay Science, 118, 171-177.
  • Brooks R.M., (2009), Soil Stabilization with Fly Ash and Rice Husk Ash, Int. Journal of Research and Reviews in Applied Sciences, 1(3), 209-217.
  • Caniani D., Masi S., Mancini I., Trulli E., (2013), Innovative reuse of drinking water sludge in geo-environmental applications, Waste management, 33(6), 1461-1468.
  • Cristelo N., Glendinning S., Fernandes L., Pinto A.T., (2013), Effects of alkalineactivated fly ash and Portland cement on soft soil stabilisation, Acta Geotech, 8(4), 395–405.
  • Dabhade A.N., Chaudari S.R., Gajbhaye A.R., (2014), Effect of fly ash on recycle coarse aggregate concrete, Int. J. Civ. Eng. Res, (5), 2278-3652.
  • Dassanayake K., Jayasinghe G., Surapaneni A., Hetherington C., (2015), A review on alum sludge reuse with special reference to agricultural applications and future challenges, Waste Management, 38, 321-335.
  • Dindi A., Quang D.V., Vega F.L., Nashef E., Abu-Zahra M.R.M., (2019), Review Article Applications of fly ash for CO2 capture, utilization, and storage, Journal of CO₂ Utilization, 29, 82–102.
  • Feng Y., Zhang Y., Quan X., Chen S., (2014), Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron, Water research, (52), 242-250.
  • Frías M., De La Villa R.V., De Soto I., Garcia R., Baloa T., (2014), Influence of activated drinking-water treatment waste on binary cement-based composite behavior: Characterization and properties, Composites Part B: Engineering, 60, 14-20.
  • Garrido-Baserba M., Molinos-Senante M., Abelleira-Pereira J.M., Fdez-Güelfo L.A., Poch M., Hernández-Sancho F., (2015), Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems, Journal of Cleaner Production, 107, 410-419.
  • Ghazawi Z., Khedaywi T., Gouneem A., (2015), Pollution reduction and reuse of sludge waste in asphalt paving mixtures, Proceedings of the 4th International Conference on Energy Systems, Environment, Entrepreneurship and Innovation (ICESEEI’15), February 22-24, Dubai, United Arab Emirates.
  • González A., Navia R., Moreno N., (2009), Fly ashes from coal and petroleum coke combustion: current and innovative potential applications, Waste Manag. Res., 27, 976-987.
  • Hacısalihoğlu N., (2008), Farklı Sıcaklıklarda Aktifleştirilmiş İçme Suyu Arıtma Çamurunun Çimentoda Kullanılabilirliğini Araştırılması, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Hadi M.N.S., Al-Azzawi M., Yu T., (2018), Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar, Construction and Building Materials, (175)30, 41-54.
  • Hu S.H., Hu S.C., Fu Y.P., (2013), Recycling technology—artificial lightweight aggregates synthesized from sewage sludge and its ash at lowered comelting temperature, Environmental Progress & Sustainable Energy, 32(3), 740-748.
  • Jensen J., Jepsen S.E., (2005), The production, use and quality of sewage sludge in Denmark, Waste Management, 25(3), 239-247.
  • Jung K.W., Hwang M.J., Park D.S., Ahn K.H., (2016), Comprehensive reuse of drinking water treatment residuals in coagulation and adsorption processes, Journal of environmental management, 181, 425-434.
  • Lin, D.F., Lin K.L.,Luo H.L., (2007), A Comprasion between Sludge Ash and Fly Ash on the Improvement in Soft Soil, Journal of the Air-Waste Management Assocition, 57, 59-64.
  • Mahvash S., López-Querol S., Bahadori-Jahromi A., (2017), Effect of class F fly ash on fine sand compaction through soil stabilization, Heliyon, 3(3), E00274:1-27.
  • Mazzoli A., Moriconi G., (2014), Particle size, size distribution and morphological evaluation of glass fiber reinforced plastic (GRP) industrial by-product, Micron, 67, 169-178.
  • Nath P., Sarker P., (2011), Effect of fly ash on the durability properties of high strength concrete, Procedia Eng., 14, 1149-1156.
  • Nimwinya E., Arjharn W., Horpibulsuk S., Phoo-ngernkham T., Poowancum A., (2016), A sustainable calcined water treatment sludge and rice husk ash geopolymer, Journal of Cleaner Production, 119, 128-134.
  • Orakoğlu M.E., Ekinci C.E., (2013),Zeminlerin permeabilite katsayısı ve konsolidasyon özellikleri üzerine bir çalışma: Elazığ örneği, Uluslararası Teknolojik Bilimler Dergisi,5(1), 44-50.
  • Ren X., Sancaktar E., (2019), Use of fly ash as eco-friendly filler in synthetic rubber for tire applications, Journal of Cleaner Production, 206(1), 374-382.
  • Rodríguez N.H., Martinez-Ramirez S., Blanco-Varela M., Guillem M., Puig J., Larrotcha E., Flores J., (2011), Evaluation of spraydried sludge from drinking water treatment plants as a prime material for clinker manufacture, Cement and Concrete Composites, 33(2), 267-275.
  • Santana M.V., Zhang Q., Mihelcic J.R., (2014), Influence of water quality on the embodied energy of drinking water treatment, Environmental science & technology, 48(5), 3084-3091.
  • Santos F., Li L., Li Y., Amini F., (2011), Geotechnical Properties of Fly Ash and soil mixtures for use in highway embankments, World of Coal Ash (WOCA) Conference, May 9-12, Denver, USA.
  • Silitonga E., Levacher D., Mezazigh S., (2009), Effects of the Use of Fly Ash as a Binder on the Mechanical Behaviour of Treated Dredged Sediments, Environmental Technology, 30(8), 799-807.
  • Sun Z., Vollpracht A., (2019), One year geopolymerisation of sodium silicate activated fly ash and metakaolin geopolymers, Cement and Concrete Composites, 95, 98-110.
  • Tantawy M.A., (2015), Characterization and pozzolanic properties of calcined alum sludge, Materials Research Bulletin, 61, 415– 421.
  • Tosun H., (1999),Sulama kanallarında görülen şişen zemin problemleri ve inşaat önlemleri, Osmangazi Üniversitesi Müh. Mim. Fak. Dergisi, XII(l), 23-44.
  • Taş M., Fidan D., Yılmaz F., (2018), Uçucu Kül ve Bayburt Taşı ile Zemin Stabilizasyonu, Bayburt Üniversitesi Fen Bilimleri Dergisi, 1(1), 8-14.
  • TÜİK, (2019), Belediye Atıksu İstatistikleri, Türkiye İstatistik Kurumu,https://biruni.tuik.gov.tr/medas/?kn=120&locale=tr, [Erişim 25 Şubat 2019].
  • URL-1, (1991), Council Directive of 21 May 1991 Concerning Urban Waste Water Treatment 91/271/EEC, L 135/40, https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN, [Erişim 20 Ekim 2019].
  • URL-2, (1999), Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste, L182, https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN, [Erişim 20 Ekim 2019].
  • URL-3, (2000), Türk Standardı TS 1500, İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması, https://docplayer.biz.tr/18847271-Turkstandardi-turkish-standard.html, [Erişim 12 Kasım 2019].
  • URL-4, (2006), Türk Standardı TS 1900-I, İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 1: Fiziksel Özelliklerin Tayini, http://depo.osmaniye.edu.tr/dosyalar/Dosyalar/TS%201900-1%281%29.pdf, [Erişim 12 Kasım 2019].
  • Uzuner B.A., (2000), Temel mühendisliğine giriş, Derya Kitabevi, Trabzon, 306ss.
  • Velasco P.M., Ortíz M.M., Giró M.M., Velasco L.M., (2014), Fired clay bricks manufactured by adding wastes as sustainable construction material–A review, Construction and Building materials, 63, 97-107.
  • Wang M., Hull J., Jao M., Dempsey B., Cornwell D., (1992), Engineering behavior of water treatment sludge, Journal of Environmental Engineering, 118 (6), 848-864.
  • Xie J., Wang J., Rao R., Wang C., Fang C., (2019), Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate, Composites Part B, 164 179–190.
  • Yang S.S., Guo W.Q., Chen Y.D., Wu Q.L., Luo H.C., Peng S.M., Zheng H.S., Feng X.C., Zhou X., Ren N.Q., (2015), Economical evaluation of sludge reduction and characterization of effluent organic matter in an alternating aeration activated sludge system combining ozone/ultrasound pretreatment, Bioresour Technol, 177, 194-203.
  • Yao Z.T., Ji X.S., Sarker P.K., Tang J.H., Ge L.Q., Xia M.S., Xi, Y.Q., (2015), A comprehensive review on the applications of coal fly ash, Earth-Science Reviews, (141), 105-121.
  • Zacco A., Borgese L., Gianoncelli A., StruisR.P.W.J., Depero L.E., Bontempi E., (2014), Review of fly ash inertisation treatments and recycling, Environ Chem Lett, 12(1), 153–175.
  • Zhang G., He J., Zhang P., Zhang J., (2009), Ultrasonic reduction of excess sludge from activated sludge system II: Urban sewage treatment, Journal of Hazardous Materials, 164(2-3), 1105-1109.
APA BAĞRIAÇIK B, Güner E (2020). Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. , 137 - 145. 10.21324/dacd.540532
Chicago BAĞRIAÇIK BAKİ,Güner Esra Deniz Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. (2020): 137 - 145. 10.21324/dacd.540532
MLA BAĞRIAÇIK BAKİ,Güner Esra Deniz Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. , 2020, ss.137 - 145. 10.21324/dacd.540532
AMA BAĞRIAÇIK B,Güner E Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. . 2020; 137 - 145. 10.21324/dacd.540532
Vancouver BAĞRIAÇIK B,Güner E Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. . 2020; 137 - 145. 10.21324/dacd.540532
IEEE BAĞRIAÇIK B,Güner E "Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması." , ss.137 - 145, 2020. 10.21324/dacd.540532
ISNAD BAĞRIAÇIK, BAKİ - Güner, Esra Deniz. "Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması". (2020), 137-145. https://doi.org/10.21324/dacd.540532
APA BAĞRIAÇIK B, Güner E (2020). Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. Doğal Afetler ve Çevre Dergisi, 6(1), 137 - 145. 10.21324/dacd.540532
Chicago BAĞRIAÇIK BAKİ,Güner Esra Deniz Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. Doğal Afetler ve Çevre Dergisi 6, no.1 (2020): 137 - 145. 10.21324/dacd.540532
MLA BAĞRIAÇIK BAKİ,Güner Esra Deniz Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. Doğal Afetler ve Çevre Dergisi, vol.6, no.1, 2020, ss.137 - 145. 10.21324/dacd.540532
AMA BAĞRIAÇIK B,Güner E Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. Doğal Afetler ve Çevre Dergisi. 2020; 6(1): 137 - 145. 10.21324/dacd.540532
Vancouver BAĞRIAÇIK B,Güner E Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması. Doğal Afetler ve Çevre Dergisi. 2020; 6(1): 137 - 145. 10.21324/dacd.540532
IEEE BAĞRIAÇIK B,Güner E "Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması." Doğal Afetler ve Çevre Dergisi, 6, ss.137 - 145, 2020. 10.21324/dacd.540532
ISNAD BAĞRIAÇIK, BAKİ - Güner, Esra Deniz. "Endüstriyel Atık Katkılı Kum Zeminlerin Geçirimsizlik Davranışının Araştırılması". Doğal Afetler ve Çevre Dergisi 6/1 (2020), 137-145. https://doi.org/10.21324/dacd.540532