Yıl: 2019 Cilt: 4 Sayı: 3 Sayfa Aralığı: 67 - 77 Metin Dili: İngilizce DOI: 10.4274/BMB.galenos.2019.07.012 İndeks Tarihi: 10-12-2020

Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease

Öz:
Objective: It is known that the acetylcholinergic afferents of the neocortex from subcortical areas participate in learning and memory. Autopsy studies in cases of Alzheimer’s disease (AD) have shown that most of the neurons of nucleus basalis magnocellularis (NBM) are atrophic or decreased in number. In this study, we searched for whether or not it was possible to improve the impaired learning and memory functions with foetal neural tissue transplantation in an experimental model of AD.Method: A total of thirty seven young adult male Wistar albino rats were served as experimental subjects. NBM on the right side was destroyed by the injection of kainic acid stereotactically so as to make a model of AD. The grafts were obtained from 14-16 day foetuses of the same genus. After the tissue with cholinergic neurons dissected from ventral forebrain and tissue with non-cholinergic neurons dissected from telencephalic vesicle, cell suspensions were prepared and injected stereotactically to the ipsilateral frontal cortex. Spatial learning and memory functions were tested by Morris’ water maze tasks.Results: Spatial learning and memory functions in rats were impaired by unilateral lesions of nucleus basalis magnocellularis. The impairment observed during the early period partially improved by the time. It was observed that this amelioration was accelerated with both cholinergic and non-cholinergic foetal neural tissue implantation. Conclusion: In our study, improvement of spatial learning and memory impairment with both cholinergic and non-cholinergic foetal neural tissue implantation can be explained by re-establishment of impaired connections via proliferation of limited number of surviving cholinergic neurons creating new synapses, as a result of upregulation of endogenous neural stem cells and activation of trophic mechanisms by implantation, rather than creation of functional synapses between the graft and the recipient tissue.
Anahtar Kelime:

Sıçanlarda Deneysel Alzheimer Hastalığı Modelinde Hacimsel Öğrenme ve Bellek Bozukluklarının Fetal Nöral Doku Transplantasyonu ile Düzelmesi

Öz:
Amaç: Subkortikal alanlardan neokortekse uzanan asetilkolinerjik nöronların öğrenme ve bellek süreçlerinde rol aldığı bilinmektedir. Alzheimer hastalığında (AH) yapılan otopsi incelemeleri bazal magnoselüler çekirdekteki nöronlarda atrofi veya azalma olduğunu göstermiştir. Bu çalışmada deneysel AH modelinde bozuk öğrenme ve bellek fonksiyonlarının, fötal nöral doku transplantasyonu ile düzelmesinin mümkün olup olmadığı araştırıldı. Yöntem: Deneysel çalışmada 37 adet Wistar albino cinsi genç erişkin erkek sıçan kullanıldı. AH modeli sağ bazal magnoselüler çekirdeğe stereotaktik yöntemle verilen, nörotoksik bir ajan olan kainik asit ile oluşturuldu. Greftler aynı cins sıçanların 14-16 günlük fetuslarından alındı. Kolinerjik nöronları içeren doku ventral ön beyinden, non-kolinerjik nöronların olduğu doku ise telensefalik vezikülden elde edilerek, hücre süspansiyonu haline getirildi ve stereotaktik yöntemle ipsilateral frontal kortekse implante edildi. Hacimsel öğrenme ve bellek fonksiyonları Morris’in “water maze” testi ile değerlendirildi. Bulgular: Tek taraflı bazal magnoselüler nükleus lezyonları ile sıçanlarda hacimsel öğrenme ve bellek fonksiyonları bozuldu. Erken dönemde bozulan bu fonksiyonlar geç dönemde kısmen düzeldi. Hem kolinerjik hem de non-kolinerjik fötal doku implantasyonu ile bu düzelmenin hızlandığı saptandı. Sonuç: Çalışmamızda hem kolinerjik hem de non-kolinerjik fötal nöral doku implantasyonu ile hacimsel öğrenme ve bellek fonksiyonlarının düzelmesi, greftin alıcı doku ile fonksiyonel sinapslar oluşturmasından ziyade, implantasyonun endojen nöral kök hücrelerini regüle etmesi ve trofik mekanizmaları harekete geçirmesi sonucu, sağ kalan az sayıdaki kolinerjik nöronların çoğalması ve yeni sinapslar oluşturarak bozulmuş bağlantıları yeniden kurması ile açıklanabilir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Olson L, Malmfors T. Growth characteristics of adrenergic nerves in the adult rat. Acta Physiol Scand 1970:348:1-112.
  • 2. Björklund A, Stenevi U. Growth of central catecholaminergic neurons into smooth muscle grafts in the rat mesencephalon. Brain Res 1971;31:1-10.
  • 3. Das GD, Altman J. Transplanted precusors of nerve cells. Their fair in the cerebellum of young rats. Science 1971;173:637-638.
  • 4. Stenevi U, Björklund A, Svengaard N. Transplantation of central and peripheral monamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Res 1976;114:1-20.
  • 5. Björklund A, Stenevi U. Experimental reinnervation of the rat hippocampus by grafted sympathetic ganglia. Brain Res 1977;138:259-270.
  • 6. Das GD, Hallas BH, Das KG. Transplantation of neural tissue in the brains of laboratory animal. Experientia 1979;35:143-153.
  • 7. Björklund A, Gage FH, Schmidt RH, et al. Intracerebral grafting of neuronal cell suspensions. VII. Recovery of choline acetyltranspherase activity and acetylcholine synthesis in the denervated hippocampus reinnervated by septal cell implants. Acta Physiol Scand 1983:522:59-66.
  • 8. Gage FH, Björklund A, Stenevi U, et al. Intracerebral grafting of neuronal cell suspensions. VIII. Survival and growth of implants of nigral and septal cell suspensions in intact brains of aged rats. Acta Physiol Scand 1983;522:67-75.
  • 9. Gage FH, Björklund A. Neural grafting in the aged rat brain. Ann Rev Physiol 1986;48:447-459.
  • 10. Nilsson OG. Growth and function of cholinergic neurons tranplanted to the hippocampus. University of Lund Press. https://elibrary.ru/item.asp?id=6846836
  • 11. Björklund A, Segal M, Stenevi U. Functional reinnervation of rat hippocampus by locus coeruleus implants. Brain Res 1979;170:409-426.
  • 12. Freed WJ, Perlow MJ, Karoum F, et al. Restoration of dopaminergic function by grafting of fetal rat substantia nigra to caudate nucleus: long term behavioral, biochemical and histochemical studies. Ann Neurol 1980;8:510-519.
  • 13. Korfalı E. Sıçanlarda denerve edilmiş korpus striatumun fötal dopaminerjik nöron greftleri ile reinnervasyonu. Doçentlik tezi, Uludağ Üniversitesi, 1981.
  • 14. Björklund A, Stenevi U, Schmidt RH, et al. Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta Physiol Scand 1983;522:1-7.
  • 15. Björklund A, Stenevi U, Schmidt RH, et al. Intracerebral grafting of neuronal cell suspensions. II Survival and growth of nigral call suspensions implanted in different brain sites. Acta Physiol Scand 1983;522:9-18.
  • 16. Dunnet SB, Björklund A, Schmidt RH, et al. Intracerebral grafting of neuronal cell suspensions. IV Behavioral recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions in different forebrain sites. Acta Physiol Scand 1983;522:29-37.
  • 17. Björklund A, Gage FH, Stenevi U, et al. Intracerebral grafting of neuronal cell suspensions.VI. Survival and growth of intrahippocampal implants of septal cell suspensions..Acta Physiol Scand 1983;522:49-58.
  • 18. Björklund A, Stenevi U. Intracerebral neural implants. Ann Rev Neuroscien 1984;7:279-308.
  • 19. Fine A, Dunnet SB, Björklund A, et al. Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis. I. Biochemical and anatomical observations. Neuroscience 1985;16:769-786.
  • 20. Dunnet SB, Toniolo G, Fine A, et al. Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis. II. Sensorimotor and learning impairments. Neuroscience 1985;16:787-797.
  • 21. Lindvall O, Björklund A. Transplantation strategies in the treatment of Parkinson’s disease, experimental basis and clinical trials. Acta Neurol Scand 1989;126:197-210.
  • 22. Freed CR, Breeze RE, Rosenberg NL, et al. Transplantation of human fetal dopamine cells for Parkinson’s disease. Result at 1 year. Arch Neurol 1990;47:505-512.
  • 23. Bankiewicz KS, Plunkett RJ, Jakobowitz DM, et al. The effect of fetal mesencephalon implants on primate MPTP-induced parkinsonism. Histochemical and behavioral studies. J Neurosurg 1990;72:231-244.
  • 24. Bankiewicz KS, Plunkett RJ, Jakobowitz DM, et al. Fetal nondopaminergic implants in parkinsonian primates. Histochemical and behavioral studies. J Neurosurg 1991;74:97-104.
  • 25. Mesulam MM. Large scale neurocognitive Networks and distributed processing for attention, language and memory. Ann Neurol 1990;28:597-613.
  • 26. Fibiger HC, Damsma G, Day JC. Behovioral pharmacoloy and biochemistry of central cholinergic transmission. In The basal forebrain, Napier TC, Kaliwas PW, Hanin I (editors). 1st ed., New York, Plenum Press, 1991:399-414.
  • 27. Wilson FAW. The relationship between learning, memory and neural responses in the primate brain. In The basal forebrain, Napier TC, Kaliwas PW, Hanin I (editors). 1st ed., New York, Plenum Press, 1991:253-266.
  • 28. Whitehouse PJ, Price DI, Struble RG, et al. ADand senil dementia: Loss of neurons in the basal forebrain. Science 1982;215:1237-1239.
  • 29. Whitehouse PJ, Struble RG, Hedreen JC, et al. Neuroanatomical evidence for cholinergic deficit in Alzheimer’s disease. Psyco Pharmaco Bull 1983;19:437-440.
  • 30. Mesulam MM, Mufson EJ, Rogers J. Age related shrinkage of cortically projecting cholinergic neurons. A selective effect. Ann Neurol 1986;22:31-36.
  • 31. Hansen LA, DeTeresa R, davies P, et al. Neocortical morhometry, lesion counts and choline acetyltranspherase levels in the age spectrum of Alzheimer’s disease. Neurology 1988;38:48-54.
  • 32. Weller RO. Systemic Pathology Vol 4, London, Churchill Livingstone, 1990:372-379.
  • 33. Pepeu G, Casamenti F: Lesioning the nucleus basalis. In Methods in Neuroscience vol 7: Lesions and transplantation, Conn MP (editors), 1st ed., San Diego, Academic Press, 1991:139-150.
  • 34. Morris RGM, garraud P, Rawlins JNP, et al. Place navigation impaired in rats with hippokcampal lesions. Nature 1982;297:681-683.
  • 35. Olton D, Markowska A, Voytko ML, et al. Basal forebrain cholinergic system: a functional analysis. In The basal forebrain, Napier TC, Kaliwas PW, Hanin I (editors), 1st., New York, Plenum Press, 1991:353-372.
  • 36. Weintraubt S, Mesulam MM. Right cerebral dominance on spatial attention. Arch Neurol 1987;44:621-625.
  • 37. Plunkett RJ, Weber RJ, Olfield EH. Stereotactic implantation of dispersed cell suspensions into the brain. A systematic appraisal of cell placement and survival. J neurosurg 1988;69:228-233.
  • 38. Plunkett RJ, Saris SC, Bankiewicz KS, et al. Implantation of dispersed cells into primate brain. J Neurosurg 1989;70:441-445.
  • 39. Björklund A, Stenevi U. Reconstruction of nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979;177:555-560.
  • 40. Jankovic J, Grossman R, Goodman C, et al. Clinical, biochemical and neuropathologic findings following transplantation of adrenal medulla to te caudate nucleus for treatment of Parkinson’s disease. Neurology 1984;39:1227-1234
  • 41. Backlund EO, Granbergi PO, Hamberger B, et al. Transplantation of adrenal medullary tissue to striatum in Parkinsonism. First clinical trials. J Neurosurg 1985;62:169-173.
  • 42. Olson L, Backlund EO, Gerhardt G, et al. Nigral and adrenal grafts in parkinsonism: Recent basic and clinical studies. In Advances in neurology (Yahr MD, Bergmann KJ (editors), vol 45., New York, Raven Press, 1986:85-94.
  • 43. Herlow M. Brain grafting as a treatment of parkinson’s disease. Neurosurgery 1987;20:335-342.
  • 44. Lindwall O, Backlund EO, Farde L, et al. Transplantation in Parkinson’s disease: Two cases of adrenal medullary grafts to putamen. Ann Neurol 1987;22:457-468.
  • 45. Backlund EO, Olson L, Seiger A, et al. Towards a transplantation therapy in parkinson’s disease. Ann NY Acad Sci 1987;495:658-673.
  • 46. Hansen JT, Kordower JH, Fiandaca MS, et al. Adrenal medullary allografts into the basal ganglia of cobus monkeys. Graft viability and fine structure. Exp Neurol 1988;102:62-75.
  • 47. Hitccock ER, Clough CG, Hughes RC, et al. Transplantation in Parkinson’s disease: stereotactic implantation of adrenal medulla and foetal mesencephalone. Acta Neurochir 1989;46:48-50.
  • 48. Kelly PJ, Ahlskog JE, van Heerden JA, et al. Adrenal medullary autograft transplantation into the striatum of patients with Parkinson’s disease. Mayo Clin Proc 1989;64:282-290.
  • 49. Apuzzo AMJ, Neal JH, Waters CH, et al. Utilization of unilateral and bilateral stereotactically placed adrenalomedullary-striatal autografts in parkinsonian humans: Rationale, techniques and observations. 1990;26:746-757.
  • 50. Gildenberg PL, Pettigrew LC, Merrell R, et al. Transplantation of adrenal medullary tissue to caudate nucleus using stereotactic techniques. Stereotact Funct Neurosurg 1990;54-55:268-271.
  • 51. Bakay RAE, Watts RI, Feeman A, et al. Preliminary report on adrenal-brain transplantation for parkinsonism in man. Stereotact Funct Neurosurg 1990;54-55:312-323.
  • 52. Itakura T, Yokote H, Yukawa S, et al. Transplantation of peripheric cholinergic neurons into Alzheimer model rat brain. Stereotact Funct Neurosurg 1990;54-55:368-372.
  • 53. Kordower JH, Cochran E, Penn RD, et al. Putative chromaffin cell survival and anhanced host derived TH-fiber innervation following functional adrenal medulla autograft for Parkinson’s disease. Ann Neurol 1991;29:405-412.
  • 54. Madrazo I, Franco-Bourland R, Aguilera M, et al. Development of human neural transplantation. Neurosurgery 1991;29:176-177.
  • 55. Björklund A, Stenevi U, Svendgaard NA. Growth of transplanted monaminergic neurones into the adult hippocampus along the perforant path. Nature 1976;232:787-790.
  • 56. Perlow MJ, Kumkura K, Guidotti A. prolonged survival of bovine adrenal chromaffin cells in rat cerebral ventricles. Proc Nat Acad Sci U S A 1980;77:5278-5281.
  • 57. Dunnet SB, Björklund A, Schmidt RH, et al. Intracerebral grafting of neuronal cell suspensions. V Behovioral recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand 1983:522:29-37.
  • 58. Bohn MC, Cupit L, Marciano F, et al. Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 1987;234:913-916.
  • 59. Nilsson OG, Shapiro ML, Gage FG, et al. Spatial learning and memory following fimbria-fornix transsection and grafting of fetal septal neurons to the hippocampus. Exp Brain Res 1987;67:195-215.
  • 60. Gage FH, Backlund A, Stenevi U, et al. Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science 1984;225:533-536.
  • 61. Hitchcock ER, Kenny BG, Clogh CG, et al. Stereotactic implantation of fetal mesencephalone. Stereotct Funct Neosurg 1990;55-56:282-289.
  • 62. Kellett JM, Bachelard HS. Senil dementia; The cholinergic system. In Clinical neurochemistry (Bachelard HS, Lunt GG, Marsden CD (editors). vol 2., London, Academic Press, 1986:39-42.
  • 63. McAllister JP II, Cober SR, Schaible ER, et al. Minimal connectivity between six month neostriatal transplants and the host substantia nigra. Brain Res 1989;476:345-350.
  • 64. Hurtig H, Joyce J, Sladek JR, et al. Postmortem analysis of adrenal medulla to caudate autograft in a patient with Parkinson’s disease. Ann Neurol 1989;25:607-614.
  • 65. Bohn MC, Kanuicki M. Bilateral recovery of striatal dopamine after unilateral adrenal grafting into the striatum of the MPTP treated Mouse. J Neurosci Res 1990;25:281-286.
  • 66. Kroin JS, Kao LC, Zhang TJ, et al. Dopamine distribution and behovioral alterations resulting from dopamine infusion into the brain of the lesioned rat. J Neurosurg 1991;74:105-111.
  • 67. Lillien LE, Claude P. Nerve growth factor and glucocorticoids regulate phenotypic expression in cultured chromaffin cells from rhesus monkeys. Exp Cell Res 1985;16:255-268.
  • 68. Unkiser K, Skaper SD, Varon S. Neuronotrohic and neurit-promoting factors: Effects on early postnatal chromaffin cells from rat adrenal medulla. Dev brain res 1985;17:117-129.
  • 69. Tomozawa Y, Appel SH. Soluable strial extracts enhance development of mesencephalic dopaminergic neurons in vitro. 1986;399:111-124.
  • 70. Davies AM. The emerging generality of the neurotrophic hypothesis. Trends Neurosci 1988;11:243-244.
  • 71. Barde YA. What, if anything, is a neurotrophic factor? Trends Neurosci 1988;11:343-346.
  • 72. Hanley MR. Peptide regulatory factors in the nervous system. Lancet 1989;333:1373-1376.
  • 73. Lipton SA. Growth factors for neuronal survival and process regeneration. Arch Neurol 1989;46:1241-1248.
  • 74. Frim DM, short MP, Rosenberg WS, et al. Local protective effects of NGF-secreting fibroblasts against exitoxic lesions in the rat striatum. JNS 1993;78:267-273.
  • 75. Backlund EO. the stereotactic approach for transplantation to the human brain. In Intracerebral transplantation in movement disorders Lindvall O, Björklund A, Widner H (editors), 1st ed., Amsterdam, Elsevier, 1991:149-152.
  • 76. Wainer BH, lee HJ, Roback JD, et al. In vitro cell cultures as a model of the basal forebrain. In The basal fore brain Napier TC, Kaliwas PW, Hanin I (editors), 1st ed., New York, Plenum Press, 1991:415-426.
  • 77. Mufson EJ, Bothwell M, Kordower JH. Loss of nevre growth factor reseptor-containing neurons in Alzheimer’s disease. Exp Neurol 1989;105:221-232.
  • 78. Nieto-Sampedro M, Lewis ER, Cotmann CW, et al. Brain injury causes a time-dependent increase in neurotrophic activity at the lesion site. Science 1982;217:860-861.
  • 79. Korfalı E, Doygun M, Ulus İH, et al. Effects of neurotrophic factors on adrenal medulla grafts implanted into adult rat brains. Neurosurgery 1988;22:994-998.
  • 80. Fiandaca MS, Kordower JH, Hansen JT, et al. Adrenal medullary autografts anto the basal ganglia of cebus monkeys: Injury-induced regeneration. Exp Neurol 1988;102:76-91.
  • 81. Motti EDF, Penzoli G, Silani U, et al. Surgical lesions, park,insonism and brain graft operations. Lancet 1988;2:346.
  • 82. Perry VH, Gordon S. Macrophages and microglia in the nervous system Trends Neurosci 1988;11:273-277.
  • 83. Şahin F, Saydam G, Omay SB. Kök hücre plastisitesi ve klinik pratikte kök hücre tedavisi. THOD 2005;15:48-56.
  • 84. Lindwall O, Kokara Z. Stem cells fort he treatment of neurological disorders. Nature 2006;441:1094-1096.
  • 85. Hergüner MO. Nörolojik hastalıklarda kök hücre nakli. Arşiv Kaynak Tarama Dergisi 2014;23:97-107.
  • 86. Okano H, Yoshizaki T, Shimazaki T, et al. Isolation and transplantation of dopaminergic neurons and neural stem cells. Parkinsonism Relat Disord 2002;9:23-28.
  • 87. Qurednik J, Qurednik V, Snyder EX. Fetal neural tissue and stem cell grafts may induce regenerative plasticity in damaged mammalian brain. Clin Neuroscience Res 2002;2:80-85.
  • 88. Kabataş S, Teng YD. Potential roles of the neural stem cell in the restoration of the injured spinal cord. Review of the literature. Turk Neurosurg 2010;20:103-110.
  • 89. Duncan T, Valenzuela M. Alzheimer’s disease, dementia and stem cell therapy. Stem Cell Research & Therapy 2017;8:111.
  • 90. Alipour M, Nabavi SM, Arab L, et al. Stem cell therapy in Alzheimer’s disease: Possible benefits and limitting drowbacks. Molecular biology Reports 2019;46:1425-1446.
  • 91. Wang SM, Lee CU, Lim HK. Stem cell therapies for Alzheimer’s disease: is it time ? Neurocognitive Disorders 2019;32:105-116. 77
APA CAN S, Barlas O (2019). Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. , 67 - 77. 10.4274/BMB.galenos.2019.07.012
Chicago CAN Songül Meltem,Barlas Orhan Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. (2019): 67 - 77. 10.4274/BMB.galenos.2019.07.012
MLA CAN Songül Meltem,Barlas Orhan Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. , 2019, ss.67 - 77. 10.4274/BMB.galenos.2019.07.012
AMA CAN S,Barlas O Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. . 2019; 67 - 77. 10.4274/BMB.galenos.2019.07.012
Vancouver CAN S,Barlas O Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. . 2019; 67 - 77. 10.4274/BMB.galenos.2019.07.012
IEEE CAN S,Barlas O "Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease." , ss.67 - 77, 2019. 10.4274/BMB.galenos.2019.07.012
ISNAD CAN, Songül Meltem - Barlas, Orhan. "Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease". (2019), 67-77. https://doi.org/10.4274/BMB.galenos.2019.07.012
APA CAN S, Barlas O (2019). Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. Bağcılar Tıp Bülteni, 4(3), 67 - 77. 10.4274/BMB.galenos.2019.07.012
Chicago CAN Songül Meltem,Barlas Orhan Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. Bağcılar Tıp Bülteni 4, no.3 (2019): 67 - 77. 10.4274/BMB.galenos.2019.07.012
MLA CAN Songül Meltem,Barlas Orhan Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. Bağcılar Tıp Bülteni, vol.4, no.3, 2019, ss.67 - 77. 10.4274/BMB.galenos.2019.07.012
AMA CAN S,Barlas O Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. Bağcılar Tıp Bülteni. 2019; 4(3): 67 - 77. 10.4274/BMB.galenos.2019.07.012
Vancouver CAN S,Barlas O Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease. Bağcılar Tıp Bülteni. 2019; 4(3): 67 - 77. 10.4274/BMB.galenos.2019.07.012
IEEE CAN S,Barlas O "Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease." Bağcılar Tıp Bülteni, 4, ss.67 - 77, 2019. 10.4274/BMB.galenos.2019.07.012
ISNAD CAN, Songül Meltem - Barlas, Orhan. "Improvement of Spatial Learning and Memory Impairments by Fetal Neural Tissue Transplantation in Experimental Rat Model of Alzheimer’s Disease". Bağcılar Tıp Bülteni 4/3 (2019), 67-77. https://doi.org/10.4274/BMB.galenos.2019.07.012