Yıl: 2020 Cilt: 7 Sayı: 1 Sayfa Aralığı: 149 - 159 Metin Dili: İngilizce DOI: 10.31202/ecjse.59932 İndeks Tarihi: 14-12-2020

Cyber Security in Material Manufacturing

Öz:
Industry 4.0, a new industry revolution, is happening now and several developed countries are leadingthe path. Internet of things (IoT) is also encompassed by Industry 4.0. In the future, more devices in factories areto be connected to Ethernet or Internet. However, this makes the companies, devices and researchers vulnerableto cyber-attacks. Recently, some cyber-attacks which have happened to some companies or countries verify thedanger. Sintering systems and furnaces are used for research by universities and for series manufacturing byfactories. Arc furnaces and induction furnaces are also commonly used devices in metal factories. A sinteringsystem, an arc furnace or an induction furnace which is connected to Internet or Ethernet may also be undercyber-attack threat. The danger may be prevented by taking necessary precautions. In this study, these threeproductionsystems are first briefly introduced and then inspected assuming that they have been connected tointernet and examined with considering cyber-attack point of view. Some basic solutions against cyber-attacks tothe aforementioned devices are suggested.
Anahtar Kelime:

Malzeme Üretiminde Siber Güvenlik

Öz:
Yeni bir endüstri devrimi olan Endüstri 4.0 günümüzde yaşanmakta ve özellikle bazı gelişmiş ülkeler bu alanda öncü çalışmalar ortaya koymaktadır. Nesnelerin İnterneti (IoT) Endüstri 4.0 tarafından kapsanan önemli bir altyapıdır. Gelecekte, fabrikalardaki daha fazla cihazın Ethernet veya İnternet üzerinden çalışmalarını sürdürmesi öngörülmektedir. Bunun kurum ve fabrika ortamındaki cihazları ve verileri siber saldırılara karşı savunmasız bırakabileceği açıktır. Son zamanlarda, farklı ülkelerden farklı kurumlarda yapılan bazı siber saldırılar tehlikeyi doğrulamaktadır. Çeşitli malzeme sinterleme sistemleri ve fırınlar üniversiteler tarafından araştırma yapmak ve fabrikalar tarafından seri imalat yapmak için kullanılırlar. Ark fırınları ve endüksiyon fırınları da metal fabrikalarında yaygın olarak kullanılan cihazlardır. Internet veya ethernet'e bağlı bir sinterleme sistemi, bir ark ocağı veya bir indüksiyon ocağı da siber saldırı tehdidi altında olabilir. Bu noktada gerekli önlemler alınarak tehlike önlenebilir. Bu çalışmada, bu üç üretim sistemi ilk öncelikle kısaca tanıtılmış ve daha sonra internete bağlı oldukları dikkate alınarak siber saldırı bakış açıları ile incelenmişlerdir. Çalışmada, belirtilen cihazlara karşı olası siber saldırılara yönelik çözümler önerilmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Ani, U. P. D., He, H. (Mary), and Tiwari, A., Review of cybersecurity issues in industrial critical infrastructure: manufacturing in perspective, J. Cyber Secur. Technol., 2017, 1, (1), 32–74.
  • [2] Tuptuk, N. and Hailes, S., Security of smart manufacturing systems, J. Manuf. Syst., 2018, 47, 93–106.
  • [3] Bullón Pérez, J., González Arrieta, A., HernándezEncinas, A., and Queiruga-Dios, A., Industrial Cyber-Physical Systems in Textile Engineering, Springer, Cham, 2017, 126–135.
  • [4] Cyber Security in Textile Manufacturing - Research and Markets, 2018.
  • [5] Yener, T. and Zeytin, S., Production and Characterization of Niobium Toughened Ti-TiAl3 Metallic-Intermetallic Composite, Acta Phys. Pol. A., 2017, 132, (3–II), 941–943.
  • [6] Yener, Ş. Ç. and Kuntman, H. H., Fully CMOS memristor based chaotic circuit, Radioengineering, 2014, 23, (4).
  • [7] Orrù, R., Licheri, R., Locci, A. M., Cincotti, A., and Cao, G., Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R Reports, 2009, 63, (4–6), 127–287.
  • [8] Yener, S. C., Yener, T., and Mutlu, R., A process control method for the electric currentactivated/ assisted sintering system based on the container-consumed power and temperature estimation, J. Therm. Anal. Calorim., 2018, 1–10.
  • [9] Weintraub, G. and Rush, H., Process and apparatus for sintering refractory materials, 1913.
  • [10] Park, B., Lee, H., Jang, G., and Han, B., A fault analysis of DC electric arc furnaces with SVC harmonic filters in a mini-mill plant, Electr. Power Syst. Res., 2010, 80, (7), 807–814.
  • [11] Zimmermann, L., Avice, G., Blard, P.-H., Marty, B., Füri, E., and Burnard, P. G., A new allmetal induction furnace for noble gas extraction, Chem. Geol., 2018, 480, 86–92.
  • [12] Wu Ting, A new frequency domain method for the harmonic analysis of power systems with arc furnace, in APSCOM-97. International Conference on Advances in Power System Control, Operation and Management, 1997, 1997, 552–555.
  • [13] Alonso, M. A. P. and Perez Donsion, M., An Improved Time Domain Arc Furnace Model for Harmonic Analysis, IEEE Trans. Power Deliv., 2004, 19, (1), 367–373.
  • [14] Shyamal, S. and Swartz, C. L. E., Real-time energy management for electric arc furnace operation, J. Process Control, 2018.
  • [15] Silva, A. P., Segadães, A. M., and Lopes, R. A., Castable systems designed with powders reclaimed from dismantled steel induction furnace refractory linings, Ceram. Int., 2017, 43, 5020–5031.
  • [16] Lanzerstorfer, C., Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling, J. Clean. Prod., 2018, 174, 1–6.
  • [17] Khodabandeh, E., Rahbari, A., Rosen, M. A., Najafian Ashrafi, Z., Akbari, O. A., and Anvari, A. M., Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace, Energy Convers. Manag., 2017, 148, 43–56.
  • [18] Chang, G. W., Liu, Y. J., Huang, H. M., and Chu, S. Y., Harmonic analysis of the industrial power system with an AC electric arc furnace, in 2006 IEEE Power Engineering Society General Meeting, 2006, 4 pp.
  • [19] Mendis, S. R. and Gonzalez, D. A., Harmonic and transient overvoltage analyses in arc furnace power systems, IEEE Trans. Ind. Appl., 1992, 28, (2), 336–342.
  • [20] Vatankulu, Y. E., Senturk, Z., and Salor, O., Harmonics and Interharmonics Analysis of Electrical Arc Furnaces Based on Spectral Model Optimization With High-Resolution Windowing, IEEE Trans. Ind. Appl., 2017, 53, (3), 2587–2595.
  • [21] Donsion, M. P., Guemes, J. A., and Oliveira, F., Influence of a SVC on AC Arc furnaces harmonics, flicker and unbalance measurement and analysis, in Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, 1423–1428.
  • [22] Gajic, D., Savic-Gajic, I., Savic, I., Georgieva, O., and Di Gennaro, S., Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks, Energy, 2016, 108, 132–139.
  • [23] Teklić, A. T., Filipović-Grčić, B., and Pavić, I., Modelling of three-phase electric arc furnace for estimation of voltage flicker in power transmission network, Electr. Power Syst. Res., 2017, 146, 218–227.
  • [24] Rashid, M. M., Mhaskar, P., and Swartz, C. L. E., Multi-rate modeling and economic model predictive control of the electric arc furnace, J. Process Control, 2016, 40, 50–61.
  • [25] Buliński, P. et al., Numerical and experimental investigation of heat transfer process in electromagnetically driven flow within a vacuum induction furnace, Appl. Therm. Eng., 2017, 124, 1003–1013.
  • [26] Bulin´ski, P. et al., Numerical modelling of multiphase flow and heat transfer within an induction skull melting furnace, Int. J. Heat Mass Transf., 2018, 126, 980–992.
  • [27] Asad, A., Kratzsch, C., Dudczig, S., Aneziris, C. G., and Schwarze, R., Numerical study of particle filtration in an induction crucible furnace, Int. J. Heat Fluid Flow, 2016, 62, 299– 312.
  • [28] Uz-Logoglu, E., Salor, O., and Ermis, M., Online Characterization of Interharmonics and Harmonics of AC Electric Arc Furnaces by Multiple Synchronous Reference Frame Analysis, IEEE Trans. Ind. Appl., 2016, 52, (3), 2673–2683.
  • [29] HOOSHMAND, R. A., Torabian Esfahani, M., and Torabian Esfahani, M., Optimal Design of TCR/FC in Electric Arc Furnaces for Power Quality Improvement in Power Systems, Leonardo Electron. J. Pract. Technol.
  • [30] Shyamal, S. and Swartz, C. L. E., Optimization-based Online Decision Support Tool for Electric Arc Furnace Operation, IFAC-PapersOnLine, 2017, 50, (1), 10784–10789.
  • [31] Khodabandeh, E., Ghaderi, M., Afzalabadi, A., Rouboa, A., and Salarifard, A., Parametric study of heat transfer in an electric arc furnace and cooling system, Appl. Therm. Eng., 2017, 123, 1190–1200.
  • [32] Yener, T., ECAS Yöntemiyle Üretilmiş Ti-Al Esaslı İntermetalik Kompozit Malzemelerin Geliştirilmesi, Fen Bilimleri Enstitüsü, 2015.
  • [33] Laughton, M. A. and Warne, D. F., Electrical engineer’s reference book. Newnes, 2003.
  • [34] Campbell, F. C., Metals fabrication : understanding the basics. .
  • [35] Bauccio, M. and American Society for Metals., ASM metals reference book. ASM International, 1993.
  • [36] Ostwald, P. F. and Mu oz, J., Manufacturing processes and systems. John Wiley & Sons, 1997.
  • [37] Robiette, A. G., V: Coreless Induction Furnaces, Electr. Melting Pract. Charles Griffin Co, 1935, 153–252.
  • [38] Fujii, N. and Koike, N., IoT Remote Group Experiments in the Cyber Laboratory: A FPGAbased Remote Laboratory in the Hybrid Cloud, in 2017 International Conference on Cyberworlds (CW), 2017, 162–165.
  • [39] Xu, L. Da, He, W., and Li, S., Internet of Things in Industries: A Survey, IEEE Trans. Ind. Informatics, 2014, 10, (4), 2233–2243.
  • [40] Ganti, R., Ye, F., and Lei, H., Mobile crowdsensing: current state and future challenges, IEEE Commun. Mag., 2011, 49, (11), 32–39.
  • [41] Stankovic, J. A., Research Directions for the Internet of Things, IEEE Internet Things J., 2014, 1, (1), 3–9.
  • [42] Torres, A., Santos, M., Balula, S., Fortunato, J., and Fernandes, H., Turning the internet of (my) things into a remote controlled laboratory, in 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), 2016, 371–374.
  • [43] Kortuem, G., Bandara, A. K., Smith, N., Richards, M., and Petre, M., Educating the Internetof- Things Generation, Computer (Long. Beach. Calif)., 2013, 46, (2), 53–61.
  • [44] Bin, H., The Design and Implementation of Laboratory Equipments Management System in University Based on Internet of Things, in 2012 International Conference on Industrial Control and Electronics Engineering, 2012, 1565–1567.
  • [45] Gajic, D., Savic-Gajic, I., Savic, I., Georgieva, O., and Di Gennaro, S., Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks, Energy, 2016, 108, 132–139.
  • [46] Kirschen, M., Badr, K., and Pfeifer, H., Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry, Energy, 2011, 36, 6146–6155.
APA YENER T, YENER Ş, Mutlu R (2020). Cyber Security in Material Manufacturing. , 149 - 159. 10.31202/ecjse.59932
Chicago YENER Tuba,YENER Şuayb Çağrı,Mutlu Resat Cyber Security in Material Manufacturing. (2020): 149 - 159. 10.31202/ecjse.59932
MLA YENER Tuba,YENER Şuayb Çağrı,Mutlu Resat Cyber Security in Material Manufacturing. , 2020, ss.149 - 159. 10.31202/ecjse.59932
AMA YENER T,YENER Ş,Mutlu R Cyber Security in Material Manufacturing. . 2020; 149 - 159. 10.31202/ecjse.59932
Vancouver YENER T,YENER Ş,Mutlu R Cyber Security in Material Manufacturing. . 2020; 149 - 159. 10.31202/ecjse.59932
IEEE YENER T,YENER Ş,Mutlu R "Cyber Security in Material Manufacturing." , ss.149 - 159, 2020. 10.31202/ecjse.59932
ISNAD YENER, Tuba vd. "Cyber Security in Material Manufacturing". (2020), 149-159. https://doi.org/10.31202/ecjse.59932
APA YENER T, YENER Ş, Mutlu R (2020). Cyber Security in Material Manufacturing. El-Cezerî Journal of Science and Engineering, 7(1), 149 - 159. 10.31202/ecjse.59932
Chicago YENER Tuba,YENER Şuayb Çağrı,Mutlu Resat Cyber Security in Material Manufacturing. El-Cezerî Journal of Science and Engineering 7, no.1 (2020): 149 - 159. 10.31202/ecjse.59932
MLA YENER Tuba,YENER Şuayb Çağrı,Mutlu Resat Cyber Security in Material Manufacturing. El-Cezerî Journal of Science and Engineering, vol.7, no.1, 2020, ss.149 - 159. 10.31202/ecjse.59932
AMA YENER T,YENER Ş,Mutlu R Cyber Security in Material Manufacturing. El-Cezerî Journal of Science and Engineering. 2020; 7(1): 149 - 159. 10.31202/ecjse.59932
Vancouver YENER T,YENER Ş,Mutlu R Cyber Security in Material Manufacturing. El-Cezerî Journal of Science and Engineering. 2020; 7(1): 149 - 159. 10.31202/ecjse.59932
IEEE YENER T,YENER Ş,Mutlu R "Cyber Security in Material Manufacturing." El-Cezerî Journal of Science and Engineering, 7, ss.149 - 159, 2020. 10.31202/ecjse.59932
ISNAD YENER, Tuba vd. "Cyber Security in Material Manufacturing". El-Cezerî Journal of Science and Engineering 7/1 (2020), 149-159. https://doi.org/10.31202/ecjse.59932