Yıl: 2020 Cilt: 25 Sayı: 2 Sayfa Aralığı: 121 - 131 Metin Dili: Türkçe DOI: 10.5578/flora.69606 İndeks Tarihi: 17-12-2020

COVID-19: İmmün Patogenez

Öz:
Koronavirüs-19 hastalığı (COVID-19), ilk kez 2019 yılı sonunda Çin’in Wuhan şehrinde tanımlanmıştır. Hızla tüm dünyaya yayılarak,üç yüz binden fazla insanın ölümüne neden olmuştur. Henüz bilinen etkin aşı ve tedavisi yoktur. Hastalık patogenezi anlaşılmadanaşı ve özgün tedavi geliştirilmesi mümkün değildir. Ağır solunum yetmezlik sendromu koronavirüsü (SARS-CoV) ve Ortadoğu solunumsendromu koronavirüsü (MERS-CoV) salgınlarından elde edilen bilgiler, COVID-19 patogenezinin aydınlatılmasına katkı sağlayabilir.Yapılan tüm çalışmalara rağmen SARS-CoV-2 patogenezinde pek çok nokta hala tam olarak anlaşılamamıştır. Aşırı immün yanıtınortaya çıkması, solunum yetmezliği ve hatta ölüme kadar gidebilen komplikasyonlara yol açar. COVID-19 sırasında kompleman sistemi,sitokin salınımı ve inflamasyon, endotel hasarı, koagülasyon kaskadı, hücresel ve hümoral immünite hepsi birlikte immün patogenezdeoldukça önemli bir rol oynamaktadır. Bu derlemede; COVID-19’un ortaya çıkışı, SARS-CoV-2’ye karşı oluşan immün yanıt ve konaközelliklerinin hastalığın ciddiyeti ile olan ilişkisi, antikor yanıtları ve immün patogenez, hiperkoagülasyonun olası nedenleri tartışılacakolup etkili bir aşı ve spesifik tedavi geliştirilmesi yolunda perspektif kazandırma amaçlanmıştır.
Anahtar Kelime:

COVID-19: Immunopathogenesis

Öz:
Coronavirus-19 disease (COVID-19) first described in Wuhan, China at the end of 2019. It spread rapidly all over the world and claimed the lives of over 300,000 people. There is no known effective vaccine and treatment yet. It is impossible to develop vaccines and specific treatment without understanding the pathogenesis of the disease. Experience from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks may help to elucidate the pathogenesis of COVID-19. Nevertheless, many issues remained obscure regarding the pathogenesis of SARS-CoV-2. Exaggerated immune response leads to respiratory failure and even complications which may culminate in death. Cytokines storm, the complement system, endothelial damage, coagulation cascade, cellular and humoral immunity all play an important role in immune pathogenesis and inflammation. In this review, the relationship between the immune response/host characteristics of SARS-CoV-2 and the severity of the disease, antibody responses, and immune pathogenesis, possible causes of hypercoagulation will be discussed and it’s aimed to provide perspective on the development of effective vaccines and specific treatment.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020;92(4):401-2.
  • 2. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome- related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group. bioRxiv 2020:2020.02.07.937862.
  • 3. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020 Mar;92:214-7.
  • 4. World Health Organization (WHO). [cited 2020 16 May]; Available from: http://www.who.int
  • 5. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020 Mar 27;12(4).
  • 6. Lin YS, Lin CF, Fang YT, Kuo YM, Liao PC, Yeh TM, et al. Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clin Exp Immunol 2005;141(3):500-8.
  • 7. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016;24(6):490-502.
  • 8. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020 Feb 22;395(10224):565-74.
  • 9. Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004;10(12 Suppl):S88-97.
  • 10. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367(19):1814-20.
  • 11. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother 2020 Apr 28;127:110195.
  • 12. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020 Apr;92(4):418-23.
  • 13. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020 Mar 5.
  • 14. Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 2006;13(8):751-2.
  • 15. Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 2005;86(5):1423-34.
  • 16. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1- 23.
  • 17. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009 Apr 7;106(14):5871-6.
  • 18. Li Y, Zhang Z, Yang L, Lian X, Xie Y, Li S, et al. The MERSCoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience 2020 2020/05/13/:101160.
  • 19. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020;395(10234):1417- 8.
  • 20. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 2020 Apr 15.
  • 21. Yip MS, Leung HL, Li PH, Cheung CY, Dutry I, Li D, et al. Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Med J 2016;22(3 Suppl 4):S25-31.
  • 22. Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 2014;451(2):208-14.
  • 23. Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol 2020 Apr 7.
  • 24. Chu H, Zhou J, Wong BH, Li C, Chan JF, Cheng ZS, et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 2016;213(6):904-14.
  • 25. Wang K, Chen W, Zhou YS, Lian JQ, Zhang Z, Du P, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv 2020:2020.03.14.988345.
  • 26. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol 2020;92(4):424- 32.
  • 27. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006;80(12):5927-40.
  • 28. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016;19(2):181-93.
  • 29. Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 2019;130(9):3625-39.
  • 30. Keicho N, Itoyama S, Kashiwase K, Phi NC, Long HT, Ha LD, et al. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum Immunol 2009;70(7):527-31.
  • 31. Chen YM, Liang SY, Shih YP, Chen CY, Lee YM, Chang L, et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J Clin Microbiol 2006;44(2):359-65.
  • 32. Wang SF, Chen KH, Chen M, Li WY, Chen YJ, Tsao CH, et al. Human-leukocyte antigen class I Cw 1502 and class II DR 0301 genotypes are associated with resistance to severe acute respiratory syndrome (SARS) infection. Viral Immunology 2011 2011/10/01;24(5):421-6.
  • 33. Tu X, Chong WP, Zhai Y, Zhang H, Zhang F, Wang S, et al. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect 2015;71(1):101-9.
  • 34. Hajeer AH, Balkhy H, Johani S, Yousef MZ, Arabi Y. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection. Ann Thorac Med 2016;11(3):211-3.
  • 35. Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2007;81(2):548-57.
  • 36. Lu X, Pan J, Tao J, Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011;42(1):37-45.
  • 37. Cecere TE, Todd SM, Leroith T. Regulatory T cells in arterivirus and coronavirus infections: do they protect against disease or enhance it? Viruses 2012;4(5):833-46.
  • 38. Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A 2014;111(13):4970-5.
  • 39. Ganji A, Farahani I, Khansarinejad B, Ghazavi A, Mosayebi G. Increased expression of CD8 marker on T-cells in COVID-19 patients. Blood Cells Mol Dis 2020 Apr 13;83:102437.
  • 40. Janice Oh HL, Ken-En Gan S, Bertoletti A, Tan YJ. Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect 2012;1(9):e23.
  • 41. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis 2020 Mar 30.
  • 42. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020 Mar 12.
  • 43. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020 Apr;8(4):420-2.
  • 44. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The perspectives of clinical immunologists from China. Clin Immunol 2020 May;214:108393.
APA Mavi D, Inkaya A (2020). COVID-19: İmmün Patogenez. , 121 - 131. 10.5578/flora.69606
Chicago Mavi Deniz,Inkaya Ahmet Cagkan COVID-19: İmmün Patogenez. (2020): 121 - 131. 10.5578/flora.69606
MLA Mavi Deniz,Inkaya Ahmet Cagkan COVID-19: İmmün Patogenez. , 2020, ss.121 - 131. 10.5578/flora.69606
AMA Mavi D,Inkaya A COVID-19: İmmün Patogenez. . 2020; 121 - 131. 10.5578/flora.69606
Vancouver Mavi D,Inkaya A COVID-19: İmmün Patogenez. . 2020; 121 - 131. 10.5578/flora.69606
IEEE Mavi D,Inkaya A "COVID-19: İmmün Patogenez." , ss.121 - 131, 2020. 10.5578/flora.69606
ISNAD Mavi, Deniz - Inkaya, Ahmet Cagkan. "COVID-19: İmmün Patogenez". (2020), 121-131. https://doi.org/10.5578/flora.69606
APA Mavi D, Inkaya A (2020). COVID-19: İmmün Patogenez. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 25(2), 121 - 131. 10.5578/flora.69606
Chicago Mavi Deniz,Inkaya Ahmet Cagkan COVID-19: İmmün Patogenez. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi 25, no.2 (2020): 121 - 131. 10.5578/flora.69606
MLA Mavi Deniz,Inkaya Ahmet Cagkan COVID-19: İmmün Patogenez. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, vol.25, no.2, 2020, ss.121 - 131. 10.5578/flora.69606
AMA Mavi D,Inkaya A COVID-19: İmmün Patogenez. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi. 2020; 25(2): 121 - 131. 10.5578/flora.69606
Vancouver Mavi D,Inkaya A COVID-19: İmmün Patogenez. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi. 2020; 25(2): 121 - 131. 10.5578/flora.69606
IEEE Mavi D,Inkaya A "COVID-19: İmmün Patogenez." Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 25, ss.121 - 131, 2020. 10.5578/flora.69606
ISNAD Mavi, Deniz - Inkaya, Ahmet Cagkan. "COVID-19: İmmün Patogenez". Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi 25/2 (2020), 121-131. https://doi.org/10.5578/flora.69606