Yıl: 2020 Cilt: 3 Sayı: 3 Sayfa Aralığı: 135 - 146 Metin Dili: İngilizce DOI: 10.35208/ert.763459 İndeks Tarihi: 18-12-2020

Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell

Öz:
Hazelnut shell is the primary byproduct of hazelnut industry which has the potential source of antioxidants, andphenolics with interest of pharmaceutical, food, and cosmetic industries. The main goal of this study is to determineeffects of extraction method, extraction time, solvent type, solid to liquid ratio, and particle size on extraction yield,antioxidant capacity, and total phenolic content of waste hazelnut shell. The highest extraction yield was found as15.4% by using methanol as solvent, in combined extraction for 16 h total extraction time. As for the best antioxidantcapacity, 0.0508 mg TE mL-1 was observed by using methanol as a solvent in ultrasonic extraction, whereas thehighest phenolic content was found as 0.188 mg GAE mL-1 by Soxhlet extraction with acetone for 8 h. After extractionof hazelnut shell waste, major components were found as oleic and palmitic acids for all solvent types according toGC-MS results.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. A. Saha, and B. B. Basak, ''Scope of value addition and utilization of residual biomass from medicinal and aromatic plants,'' Industrial Crops and Products, Vol. 145, pp. 1-16, 2019.
  • [2]. R. C. Saxena, D. K. Adhikari, and H. B. Goyal, ''Biomass-based energy fuel through biochemical routes: A review,'' Renewable and Sustainable Energy Reviews, Vol. 13(1), pp. 167- 178, 2009.
  • [3]. L. Pérez-Armada, S. Rivas, B. González, and A. Moure, ''Extraction of phenolic compounds from hazelnut shells by green processes,'' Journal of Food Engineering, Vol. 255, pp. 1-8, 2019.
  • [4]. B. Yuan, M. Lu, K. M. Eskridge, L. D. Isom, and M. A. Hanna, ''Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells,'' Food Chemistry, Vol. 244, pp. 7-15, 2018.
  • [5]. G. Gozaydin, and A. Yuksel, ''Valorization of hazelnut shell waste in hot compressed water,'' Fuel Processing Technology, Vol. 166, pp. 96-106, 2017.
  • [6]. S. K. Sümer, Y. Kavdır, and G. Çiçek, ''Türkiye’de Tarımsal ve Hayvansal Atıklardan Biyokömür Üretim Potansiyelinin Belirlenmesi,'' KSU Journal of National Science, Vol. 19(4), pp. 379- 387, 2016.
  • [7]. E. Surek, and A. O. Buyukkileci, ''Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell,'' Carbohydrate Polymers, Vol. 174, pp. 565-571, 2017.
  • [8]. D. Licursi, C. Antonetti, S. Fulignati, S. Vitolo, M. Puccini, E. Ribechini, A. M. Raspolli Galletti, ''Indepth characterization of valuable char obtained from hydrothermal conversion of hazelnut shells to levulinic acid,'' Bioresource Technology, Vol. 244, pp. 880-888, 2017.
  • [9]. E. Demirkaya, O. Dal, and A. Yüksel, ''Liquefaction of waste hazelnut shell by using sub- and supercritical solvents as a reaction medium,'' The Journal of Supercritical Fluids, Vol. 150, pp. 11-20, 2019.
  • [10]. H. İ. Odabaş, and I. Koca, ''Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods,'' Industrial Crops and Products, Vol. 91, pp. 114-124, 2016.
  • [11]. P. J. Park, W. K. Jung, K. S. Nam, F. Shahidi, and S. K. Kim, “Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk,'' Journal of the American Oil Chemists” Society, Vol. 78(6), pp. 651-656, 2001.
  • [12]. O. R. Alara, N. H. Abdurahman, and C. I. Ukaegbu, ''Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity,'' Journal of Applied Research on Medicinal and Aromatic Plants, Vol. 11, pp. 12- 17, 2018.
  • [13]. D. S. Mudliyar, J. H. Wallenius, D. K. Bedade, R. S. Singhal, N. Madi, and S. S. Shamekh, ''Ultrasound assisted extraction of the polysaccharide from Tuber aestivum and its in vitro antihyperglycemic activity,'' Bioactive Carbohydrates and Dietary Fibre, Vol. 20, pp. 1-9, 2019.
  • [14]. W. Cai, T. Hu, A. M. Bakry, Z. Zheng, Y. Xiao, and Q. Huang, ''Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis,'' Ultrason Sonochem, Vol. 42, pp. 823-831, 2018.
  • [15]. Y. Wang, X. Zhang, X. Ma, K. Zhang, S. Li, X. Wang, X. Zhu, ''Study on the kinetic model, thermodynamic and physicochemical properties of Glycyrrhiza polysaccharide by ultrasonic assisted extraction,'' Ultrasonics Sonochemistry, Vol. 51, pp. 249-257, 2019
  • [16]. X. Chen, D. Fang, R. Zhao, J. Gao, B. M. Kimatu, Q. Hu, L. Zhao, ''Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide,'' International Journal of Biological Macromolecules, Vol. 140, pp. 505-514, 2019.
  • [17]. M. Contini, S. Baccelloni, R. Massantini, and G. Anelli, ''Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature,'' Food Chemistry, Vol. 110(3), pp. 659-669, 2008.
  • [18]. W. Wu, J. M. Beecher Gr Fau - Holden, D. B. Holden Jm Fau - Haytowitz, S. E. Haytowitz Db Fau - Gebhardt, R. L. Gebhardt Se Fau - Prior, and R. L. Prior, ''Lipophilic and hydrophilic antioxidant capacities of common foods in the United States,'' Journal of Agricultural Food Chemistry, Vol. 52, pp. 4026-4037, 2004 .
  • [19]. F. Shahidi, C. Alasalvar, and C. M. Liyana- Pathirana, ''Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts,'' Journal of Agricultural and Food Chemistry, Vol. 55(4), pp. 1212-1220, 2007.
  • [20]. Q. Zhang, ''Effects of extraction solvents on phytochemicals and antioxidant activities of walnut (Juglans regia L.) green husk extracts,'' European Journal of Food Science and Technology, Vol. 3(5), pp. 15-21, 2015
  • [21]. H. Mazaheri, K. T. Lee, S. Bhatia, and A. R. Mohamed, ''Sub/supercritical liquefaction of oil palm fruit press fiber for the production of biooil: effect of solvents,'' Bioresource Technology, Vol. 101(19), pp. 7641-7647, 2010
  • [22]. V. I. F. Mabayo, J. R. C. Aranas, V. J. B. Cagas, D. P. A. Cagas, A. L. Ido, and R. O. Arazo, ''Optimization of oil yield from Hevea brasiliensis seeds through ultrasonic-assisted solvent extraction via response surface methodology,'' Sustainable Environment Research, Vol. 28(1), pp. 39-46, 2018.
  • [23]. B. H. H. Goh, H. C. Ong, C. T. Chong, W. H. Chen, K. Y. Leong, S. X. Tan, and X. J. Lee, ''Ultrasonic assisted oil extraction and biodiesel synthesis of Spent Coffee Ground,'' Fuel, Vol. 261, pp. 1-10, 2020.
  • [24]. E. Brglez Mojzer, M. Knez Hrncic, M. Skerget, Z. Knez, and U. Bren, ''Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects,'' Molecules, Vol. 21(7), 2016.
  • [25]. F. Dahmoune, G. Spigno, K. Moussi, H. Remini, A. Cherbal, and K. Madani, ''Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction,'' Industrial Crops and Products, Vol. 61, pp. 31-40, 2014.
  • [26]. H. Mohammadpour, S. M. Sadrameli, F. Eslami, and A. Asoodeh, ''Optimization of ultrasound assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method,'' Industrial Crops and Products, Vol. 131, pp. 106-116, 2019.
  • [27]. D. B. N. R. Jadhav, P. R. Gogate, and V. K. Rathod, ''Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction,'' Journal of Food Engineering, Vol. 93(4), pp. 421-426, 2009.
  • [28]. R. Tir, P. C. Dutta, and A. Y. Badjah-Hadj-Ahmed, ''Effect of the extraction solvent polarity on the sesame seeds oil composition,'' European Journal of Lipid Science and Technology, Vol. 114(12), pp. 1427-1438, 2012.
  • [29]. A. Rajput, and T. Rajput, ''Isolation of stigmasterol and β-sitosterol from chloroform extract of leaves of Corchorus fascicularis Lam,'' International Journal of Biological Chemistry, Vol. 6(4), pp. 130-135, 2012.
  • [30]. M. Yakubu, J. Yusuf, and J. Gambo, ''Isolation of Stigmast-4-ENE-3-One and Gamma-Sitosterol from the Aerieal Part of Synedrella Nodiflora Linn (Asteracae) ,'' IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS, Vol. 9 (5), pp. 74- 77, 2014.
  • [31]. L. Cheng, X. P. Ye, R. He, and S. Liu, ''Investigation of rapid conversion of switchgrass in subcritical water,'' Fuel Processing Technology, Vol. 90(2), pp. 301-311, 2009.
  • [32]. I. Pavlovič, Z. Knez, and M. Škerget, ''Subcritical Water - a Perspective Reaction Media for Biomass Processing to Chemicals: Study on Cellulose Conversion as a Model for Biomass,'' Chemical and Biochemical Engineering Quarterly, Vol. 27, pp. 73-82, 2013.
APA Dal O, Şengün D, YÜKSEL ÖZŞEN A (2020). Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. , 135 - 146. 10.35208/ert.763459
Chicago Dal Orkan,Şengün Duygu,YÜKSEL ÖZŞEN ASLI Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. (2020): 135 - 146. 10.35208/ert.763459
MLA Dal Orkan,Şengün Duygu,YÜKSEL ÖZŞEN ASLI Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. , 2020, ss.135 - 146. 10.35208/ert.763459
AMA Dal O,Şengün D,YÜKSEL ÖZŞEN A Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. . 2020; 135 - 146. 10.35208/ert.763459
Vancouver Dal O,Şengün D,YÜKSEL ÖZŞEN A Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. . 2020; 135 - 146. 10.35208/ert.763459
IEEE Dal O,Şengün D,YÜKSEL ÖZŞEN A "Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell." , ss.135 - 146, 2020. 10.35208/ert.763459
ISNAD Dal, Orkan vd. "Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell". (2020), 135-146. https://doi.org/10.35208/ert.763459
APA Dal O, Şengün D, YÜKSEL ÖZŞEN A (2020). Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. Environmental Research & Technology, 3(3), 135 - 146. 10.35208/ert.763459
Chicago Dal Orkan,Şengün Duygu,YÜKSEL ÖZŞEN ASLI Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. Environmental Research & Technology 3, no.3 (2020): 135 - 146. 10.35208/ert.763459
MLA Dal Orkan,Şengün Duygu,YÜKSEL ÖZŞEN ASLI Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. Environmental Research & Technology, vol.3, no.3, 2020, ss.135 - 146. 10.35208/ert.763459
AMA Dal O,Şengün D,YÜKSEL ÖZŞEN A Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. Environmental Research & Technology. 2020; 3(3): 135 - 146. 10.35208/ert.763459
Vancouver Dal O,Şengün D,YÜKSEL ÖZŞEN A Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. Environmental Research & Technology. 2020; 3(3): 135 - 146. 10.35208/ert.763459
IEEE Dal O,Şengün D,YÜKSEL ÖZŞEN A "Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell." Environmental Research & Technology, 3, ss.135 - 146, 2020. 10.35208/ert.763459
ISNAD Dal, Orkan vd. "Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell". Environmental Research & Technology 3/3 (2020), 135-146. https://doi.org/10.35208/ert.763459