Burçin Şeyda ÇORBA ZORLU
(Ondokuz Mayıs Üniversitesi, Fen Edebiyat Fakültesi, İstatistik Bölümü, Samsun, Türkiye)
(Ondokuz Mayıs Üniversitesi, Fen Edebiyat Fakültesi, İstatistik Bölümü, Samsun, Türkiye)
Yıl: 2020Cilt: 36Sayı: 1ISSN: 1012-2354Sayfa Aralığı: 89 - 102İngilizce

142 0
Classification of Factors Affecting Renal Failure by Machine Learning Methods
Machine learning methods are widely used for data analysis inhealth research. The aim of this study is to classify the factors that affect renalfailure by using various machine learning methods such as Artificial NeuralNetworks (Multilayer Perceptron), Support Vector Machines, Naive Bayes,Decision Trees, Random Forests, K-Nearest Neighborhood algorithms. In thisstudy, 237 patients who have been in emergency unit in Hospital of Numunein Ankara and were older than 18 years and have upper gastrointestinalbleeding symptoms have been selected. Here, 34 variables such as age,gender, blood values, other diseases etc. which affect renal failure have beenused to make classification with machine learning methods. When machinelearning methods are compared according to the accuracy rates, F-measure,sensivity, specifity and Kappa values, it has been found that decision treesalgorithm performs well.
DergiAraştırma MakalesiErişime Açık
  • [1] Schultz, M., Reitmann, S. 2019. Machine learning approach to predict aircraft boarding. Transportation Research Part C: Emerging Technologies, 98, 391-408.
  • [2] Maheshwari, A., Davendralingam, N., DeLaurentis, D. A. 2018. A Comparative Study of Machine Learning Techniques for Aviation Applications. In 2018 Aviation Technology, Integration, and Operations Conference p. 3980.
  • [3] Gümüşçü, A., Tenekeci, M. E., Bilgili, A. V. 2019. Estimation of wheat planting date using machine learning algorithms based on available climate data. Sustainable Computing: Informatics and Systems.
  • [4] Rehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., Shin, J. 2019. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture, 156, 585-605.
  • [5] Burri, R. D., Burri, R., Bojja, R. R., Buruga, S. 2019. Insurance Claim Analysis using Machine Learning Algorithms. International Journal of Advanced Science and Technology, 127(1), 147-155.
  • [6] Ferreiro, S., Sierra, B., Irigoien, I., Gorritxategi, E. 2011. Data mining for quality control: Burr detection in the drilling process. Computers & Industrial Engineering, 60(4), 801-810.
  • [7] Adadi, A., Adadi, S., Berrada, M. 2019. Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis. Advances in Bioinformatics.
  • [8] Librenza-Garcia, D., Kotzian, B. J., Yang, J., Mwangi, B., Cao, B., Lima, L. N. P. Passos, I. C. 2017. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neuroscience &Biobehavioral Reviews, 80, 538-554.
  • [9] Lofaro, D., Maestripieri, S., Greco, R., Papalia, T., Mancuso, D., Conforti, D., Bonofiglio, R. 2010. Prediction of chronic allograft nephropathy using classification trees. In Transplantation proceedings, Vol. 42, No. 4, pp. 1130-1133, Elsevier.
  • [10] Greco, R., Papalia, T., Lofaro, D., Maestripieri, S., Mancuso, D., Bonofiglio, R. 2010. Decisional trees in renal transplant follow-up. In Transplantation proceedings, Vol. 42, No. 4, pp. 1134-1136, Elsevier.
  • [11] Martínez-Martínez, J. M., Escandell-Montero, P., Barbieri, C., Soria-Olivas, E., Mari, F., MartínezSober, M. Stopper, A. 2014. Prediction of the hemoglobin level in hemodialysis patients using machine learningtechniques. Computer methods and programs in biomedicine, 117(2), 208-217.
  • [12] Mezzatesta, S., Torino, C., De Meo, P., Fiumara, G., Vilasi, A. 2019. A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis. Computer Methods and Programs in Biomedicine, 177, 9-15.
  • [13] Cruz, J. A., Wishart, D. S. 2006. Applications of machine learning in cancer prediction and prognosis. Cancer informatics, 2, 117693510600200030.
  • [14] Tangri, N., Ansell, D., Naimark, D. 2011. Determining factors that predict technique survival on peritoneal dialysis: application of regression and artificial neural network methods. Nephron Clinical Practice, 118(2), c93-c100.
  • [15] Kumari, M., Godara, S. 2011. Comparative study of data mining classification methods in cardiovascular disease prediction 1, International Journal of Computer Science and Technology, Vol 2, Issue 2, 304-308.
  • [16] Gupta, S., Kumar, D., Sharma, A. 2011. Data Mining Classification Techniques Applied for Breast Cancer Diagnosis and Prognosis. Indian Journal of Computer Science and Engineering, 2 (2), 188- 195.
  • [17] Krishnaiah, V., Narsimha, D. G., Chandra, D.N.S. 2013. Diagnosis of lung cancer prediction system using data mining classification techniques. International Journal of Computer Science and Information Technologies, 4(1), 39-45.
  • [18] Kunwar, V.,Chandel, K., Sabitha, A. S., Bansal, A. 2016. Chronic Kidney Disease analysis using data mining classification techniques. In 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), pp. 300-305. IEEE.
  • [19] Aziz, A., Rehman, A. U. 2017. Detection of Cardiac Disease using Data Mining Classification Techniques. IJACSA) International Journal of Advanced Computer Science and Applications, 8(7).
  • [20] Davazdahemami, B., Delen, D. 2019. The confounding role of common diabetes medications in developing acute renal failure: A data mining approach with emphasis on drug-drug interactions. Expert Systems with Applications, 123, 168-177.
  • [21] Kumar, A., Kumar, A., Kumar, P., Kumar, P. 2014. U.S. Patent No. 8,668,938. Washington, DC: U.S. Patent and Trademark Office.
  • [22] Podestà, M. A., Galbusera, M., Remuzzi, G. 2019. Bleeding and Hemostasis in Acute Renal Failure. In Critical Care Nephrology (pp. 630-635). Content Repository Only!.
  • [23] Lew, S. Q., Ing, T. S. 2019. Gastrointestinal Problems in Acute Kidney Injury. In Critical Care Nephrology pp. 635-640, Content Repository Only!.
  • [24] Vijayarani, S., Dhayanand, S., & Phil, M. 2015. Kidney disease prediction using SVM and ANN algorithms. International Journal of Computing and Business Research (IJCBR), 6(2).
  • [25] Vijayarani, S., & Dhayanand, S. 2015. Data mining classification algorithms for kidney disease prediction. International Journal on Cybernetics & Informatics (IJCI), 4(4), 13-25.
  • [26] Subasi, A., Alickovic, E., & Kevric, J. 2017. Diagnosis of chronic kidney disease by using random forest. In CMBEBIH 2017 (pp. 589-594). Springer, Singapore.
  • [27] Ani, R., Sasi, G., Sankar, U. R., & Deepa, O. S. 2016. Decision support system for diagnosis and prediction of chronic renal failure using random subspace classification. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1287-1292). IEEE.
  • [28] Sinha, P., & Sinha, P. 2015. Comparative study of chronic kidney disease prediction using KNN and SVM. International Journal of Engineering Research and Technology, 4(12), 608-12.
  • [29] Al-Hyari, A. Y., Al-Taee, A. M., & Al-Taee, M. A. 2014. Diagnosis and classification of chronic renal failure utilising intelligent data mining classifiers. International Journal of Information Technology and Web Engineering (IJITWE), 9(4), 1-12.
  • [30] Polat, H., Mehr, H. D., & Cetin, A. 2017. Diagnosis of chronic kidney disease based on support vector machine by feature selection methods. Journal of medical systems, 41(4), 55.
  • [31] Khitan, Z., Shapiro, A. P., Shah, P. T., Sanabria, J. R., Santhanam, P., Sodhi, K., ... & Shapiro, J. I. 2017. Predicting adverse outcomes in chronic kidney disease using machine learning methods: data from the modification of diet in renal disease. Marshall Journal of Medicine, 3(4), 67.
  • [32] Barbieri, C., Mari, F., Stopper, A., Gatti, E., Escandell-Montero, P., Martínez-Martínez, J. M., & MartínGuerrero, J. D. 2015. A new machine learning approach for predicting the response to anemia treatment in a large cohort of end stage renal disease patients undergoing dialysis. Computers in biology and medicine, 61, 56-61.
  • [33] Dimitrov, B. D., Perna, A., Ruggenenti, P., & Remuzzi, G. 2003. Predicting end-stage renal disease: Bayesian perspective of information transfer in the clinical decision-making process at the individual level. Kidney international, 63(5), 1924-1933.
  • [34] Alpaydın, E. 2004. Introduction to Machine Learning, MIT Press.
  • [35] Kavzoğlu, T., Çölkesen, İ., 2010. Karar Ağaçları ile Uydu Görüntülerinin Sınıflandırılması: Kocaeli Örneği. Electronic Journal of Map Technologies, 2 (1), 36-45.
  • [36] Aksu, M. Ç., Karaman, E. 2017. KararAğaçları ile Bir Web Sitesinde Link Analizi ve Tespiti. Acta Infologica, 1 (2), 84-91.
  • [37] Phyu, N. T. 2009. Survey of Classification Techniques in Data Mining. IMECS 2009, March 18-20, Hong Kong.
  • [38] Qiu, X.Y., Kang, K., Zhang, H.X. 2008. Selection of kernel parameters for K-NN, IEEE International Joint Conference on Neural Networks (IJCNN), 61-65.
  • [39] Peterson, L. E. 2009. K-nearest neighbor. Scholarpedia, 4(2), 1883.
  • [40] Islam, M. J., Wu, Q. J., Ahmadi, M., Sid-Ahmed, M. A. 2007. Investigating the performance of naivebayes classifiers and k-nearest neighbor classifiers. November, 2007. 2007 International Conference on Convergence Information Technology (ICCIT 2007), 1541-1546. IEEE.
  • [41] Dangare, C. S., Apte, S. S. 2012. Improved study of heart disease prediction system using data mining classification techniques. International Journal of Computer Applications, 47(10), 44-48. [42] Quinlan, J.,R., 1987. Simplifying decision trees, International Journal of Man-Machine Studies, 27, 221-234
  • [43] Özkan, Y., 2008. Veri Madenciliği Yöntemleri. Papatya Yayıncılık Eğitim, İstanbul, 216.
  • [44] Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5- 32. doi: 10.1023/A:1010933404324
  • [45] Breiman, L., & Cutler, A. 2005. Random Forests. Berkeley.
  • [46] Han, J., Pei, J., Kamber, M. 2011. Data mining: concepts and techniques. Elsevier.
  • [47] Pal, M. 2005. Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26 (1), 217–222.
  • [48] Akman, M., Genç, Y., Ankaralı, H. 2011. Random Forests Methods and an Application in Health Science. TurkiyeKlinikleri Journal of Biostatistics, 3(1), 36-48.
  • [49] Karakoyun, M., Hacıbeyoğlu, M. 2014. Biyomedikal Veri Kümeleri ile Makine Öğrenmesi Sınıflandirma Algoritmalarının İstatistiksel Olarak Karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 16 (48), 30-42.
  • [50] Lewis, D. D. 1992. An evaluation of phrasal and clustered representations on a text categorization task. In Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, June, ACM, 37-50.
  • [51] Dimitoğlu, G., Adams, J. A., Jim, C. M. 2012. Comparison of the C4.5 and a Naïve Bayes classifier for the prediction of lung cancer survivability. arXiv preprint arXiv, 1206.1121.
  • [52] Orhan, U., Adem, K. 2012. Naive Bayes Yönteminde Olasılık Çarpanlarının Etkileri. Elektrik Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 723.
  • [53] Haykin, S. 1999. Neural networks: A comprehensive foundation, Prentice-Hall, New Jersey.
  • [54] Öztemel, E. 2012. Yapay Sinir Ağları,Üçüncü Basım, Papatya Yayıncılık, İstanbul.
  • [55] Kartolopoulos, S. V. 1996. Understanding neural network and fuzzy logic, IEEE Press., New York.
  • [56] Vapnik, V.N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York.
  • [57] Han, J.,Kamber, M. 2006. Data Mining Concepts and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco.
  • [58] Güner, N., Çomak, E. 2011. Mühendislik Öğrencilerinin Matematik I Derslerindeki Başarısının Destek Vektör Makineleri Kullanılarak Tahmin Edilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 17 (2), 87-96.
  • [59] Huang, T. M., Kecman, V., Kopriva, I. 2006. Kernel Based Algorithms For Mining Huge Data Sets: Supervised, Semi-Supervised, and Unsupervised Learning. Studies in Computational Intelligence, Secaucus, NJ, Springer, USA.
  • [60] Tan, Y., Wang, J. 2004. A support vector machine with a hybrid kernel and minimal VapnikChervonenkis dimension. IEEE Transactions on knowledge and data engineering, 16(4), 385-395.
  • [61] Cover, T., Hart, P., 1967. Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
  • [62] Cakmak, U., Merhametsiz, O., GokOguz, E., Ercan, Z., Haspulat, A., Ozkan, S. K., ... & Deniz Aylı, M. 2016. Effects of acute kidney injury on clinical outcomes in patients with upper gastrointestinal bleeding. Renalfailure, 38(2), 176-184.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.