Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations

Yıl: 2020 Cilt: 7 Sayı: 3 Sayfa Aralığı: 1167 - 1190 Metin Dili: İngilizce DOI: 10.31202/ecjse.733167 İndeks Tarihi: 26-12-2020

Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations

Öz:
For the Photovoltaic panels, one of the main troubles is generating the limited values of the voltage.To enhance this DC voltage for grid applications, high-voltage gain, transformer-less, low-voltage stress, andefficient DC-DC boost converters are used. The main concern is keeping the voltage constant at the output endsof the converter by changing the voltage of the PV array or the value of the load under the maximum power ofthe array through the simple control approaches. This approach is well-known as the Maximum Power PointTracking (MPPT). This study presents the control process for the Two-stage Switched-Capacitor (SC) cell-basedboost converter with Proportional Integral (PI) and fuzzy logic controller methods. Two-stage SC cell-basedboost converter has been used instead of the conventional boost converter to provide higher voltage gain andlower voltage stresses on the power switch. In the proposed study, the voltage gain and efficiency of the boostconverter are computed utilizing the method of the inductors volt-second balance and capacitor current-chargeapproaches. The compared systems were tested at different input voltages, and the output voltage is fixed at 200VDC. Results exhibit the comparison between PI controller and fuzzy logic controller algorithms applied to theconverter. In this article, MATLAB / SIMULINK software was utilized. The final results demonstrate that thefuzzy logic controller has quicker performance compared with PI Control but the PI controller has lessovershoots and undershoots at the change time of the input voltage or output load.
Anahtar Kelime:

Fotovoltaik Kullanımlar için Uygulanabilir, İki Kademeli Anahtarlamalı Kapasitör Tabanlı DC-DC Yükseltici Dönüştürücü için Küçük Sinyal Bazlı PI ve Bulanık Mantık Denetleyicisi Yaklaşımlarıyla Maksimum Güç Noktası Takibi

Öz:
Fotovoltaik paneller için esas problemlerden biri de voltajın sınırlı değerlerde üretilmesidir. Şebeke uygulamaları için bu DC voltajını arttırmak için, yüksek voltaj kazanclı, trafosuz, düşük voltaj stresi ve verimli DC-DC yükseltici dönüştürücüler kullanılır.Esas olan, basit kontrol yaklaşımları ile PV dizisinin gerilimini veya dizinin maksimum güç altındaki yük değerini değiştirerek voltajı dönüştürücünün çıkış uçlarında sabit tutmaktır.Bu yaklaşım Maksimum Güç Noktası İzleme (MPPT) olarak bilinir. Bu çalışma, Orantılı İntegral (PI) ve bulanık mantık denetleyici yöntemlerine sahip İki Aşamalı Anahtarlamalı Kapasitör (SC) hücre tabanlı boost dönüştürücü için kontrol sürecini sunar. Güç anahtarı üzerinde düşük voltaj stresleri ve daha yüksek voltaj kazancı sağlamak için geleneksel yükseltici dönüştürücü yerine iki aşamalı SC hücre tabanlı yükseltici dönüştürücü kullanılmıştır. Önerilen çalışmada, yükseltici dönüştürücünün voltaj kazancı ve verimliliği, volt-ikinci denge yöntemi ve akım şarj yaklaşımları kullanılarak hesaplanmıştır. Karşılaştırılan sistemler farklı giriş voltajlarında test edilmiştir ve çıkış voltajı 200 VDC'ye sabitlenmiştir.Sonuçlar, dönüştürücüye uygulanan PI denetleyicisi ile bulanık mantık denetleyicisi algoritmaları arasındaki karşılaştırmayı gösterir. Bu makalede MATLAB / SIMULINK yazılımı kullanılmıştır. Nihai sonuçlar, bulanık mantık denetleyicisinin PI Kontrolü ile karşılaştırıldığında daha hızlı performansa sahip olduğunu, ancak PI denetleyicisinin giriş voltajının veya çıkış yükünün değişim süresinde daha az aşma ve aşınmaya sahip olduğunu göstermektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Spring, G. Wirth, G. Becker, R. Pardatscher and R. Witzmann, "Grid Influences From Reactive Power Flow of Photovoltaic Inverters With a Power Factor Specification of One," in IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1222-1229, May 2016, DOI: 10.1109/TSG.2015.2413949.
  • [2]. A. Sangwongwanich and F. Blaabjerg, "Mitigation of Interharmonics in PV Systems with Maximum Power Point Tracking Modification," in IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8279-8282, Sept. 2019, doi: 10.1109/TPEL.2019.2902880.
  • [3]. D. GHADERI, D. Molaverdi, A. Kokabi, and B. Papari, “A Multi Phase Impedance Source Inverter with an Improved Controller Structure,” ELECTRICAL ENGINEERING, pp. 0–0, Mar. 2020.
  • [4]. H. D. Tafti, C. D. Townsend, G. Konstantinou and J. Pou, "A Multi-Mode Flexible Power Point Tracking Algorithm for Photovoltaic Power Plants," in IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5038-5042, June 2019, DOI: 10.1109/TPEL.2018.2883320.
  • [5]. M. Lei et al., "An MPC-Based ESS Control Method for PV Power Smoothing Applications," in IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2136-2144, March 2018, DOI: 10.1109/TPEL.2017.2694448.
  • [6]. Y. Jeon, H. Lee, K. A. Kim and J. Park, "Least Power Point Tracking Method for Photovoltaic Differential Power Processing Systems," in IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1941-1951, March 2017, DOI: 10.1109/TPEL.2016.2556746.
  • [7]. H. D. Tafti, A. Sangwongwanich, Y. Yang, J. Pou, G. Konstantinou and F. Blaabjerg, "An Adaptive Control Scheme for Flexible Power Point Tracking in Photovoltaic Systems," in IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5451-5463, June 2019, DOI: 10.1109/TPEL.2018.2869172.
  • [8]. J. Wang, K. Sun, H. Wu, L. Zhang, J. Zhu and Y. Xing, "Quasi-Two-Stage Multifunctional Photovoltaic Inverter with Power Quality Control and Enhanced Conversion Efficiency," in IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7073-7085, July 2020, DOI: 10.1109/TPEL.2019.2956940.
  • [9]. Bayrak G.; Ghaderi D. An Improved Step-Up Converter with a Developed Real-Time FuzzyBased MPPT Controller for PV-based Residential Application, International Transactions on Electrical Energy Systems, 2019, DOI: 10.1002/2050-7038.12140
  • [10]. S. Kolesnik et al., "Solar Irradiation Independent Expression for Photovoltaic Generator Maximum Power Line," in IEEE Journal of Photovoltaics, vol. 7, no. 5, pp. 1416-1420, Sept. 2017, DOI: 10.1109/JPHOTOV.2017.2713404.
  • [11]. B. Wu, S. Li, Y. Liu and K. Ma Smedley, "A New Hybrid Boosting Converter for Renewable Energy Applications," in IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1203- 1215, Feb. 2016, DOI: 10.1109/TPEL.2015.2420994.
  • [12]. A. Eslami and T. Ghanbari, "New mathematical model from system standpoint to analyse and mitigate PV leakage current of large PV strings/arrays," in IET Generation, Transmission & Distribution, vol. 13, no. 4, pp. 543-552, 26 2 2019, DOI: 10.1049/iet-gtd.2018.5030.
  • [13]. R. P. Xu, C. Zhang, Y. Xu and Z. Y. Dong, "Rolling horizon based multi-objective robust voltage/VAR regulation with conservation voltage reduction in high PV-penetrated distribution networks," in IET Generation, Transmission & Distribution, vol. 13, no. 9, pp. 1621-1629, 7 5 2019, DOI: 10.1049/iet-gtd.2018.5940.
  • [14]. R. Yan and T. K. Saha, "Investigation of Voltage Stability for Residential Customers Due to High Photovoltaic Penetrations," in IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 651-662, May 2012, DOI: 10.1109/TPWRS.2011.2180741.
  • [15]. Y. Li et al., "Power Compensation Control for Interconnection of Weak Power Systems by VSC-HVDC," in IEEE Transactions on Power Delivery, vol. 32, no. 4, pp. 1964-1974, Aug. 2017, DOI: 10.1109/TPWRD.2016.2602890.
  • [16]. Huang R, Hong F, Ghaderi D. Sliding mode controller-based e-bike charging station for photovoltaic applications. Int Trans Electr Energ Syst. 2020; e12300. DOI: 10.1002/2050- 7038.12300
  • [17]. D. Ghaderı, P. Kiran Maroti, P. Sanjeevikumar, J. Bo HolmNielsen, E. Hossain, and A. Nayyar, “A Modified Step Up Converter with Small Signal Analysis Based Controller for Renewable Resource Applications,” Applied Sciences-Basel, vol. 10, no. 1, pp. 1–23, Jan. 2020. DOI:10.3390/app10010102
  • [18]. D. Ghaderı and G. Bayrak, “Performance Assessment of a High Powered Boost Converter for Photovoltaic Residential Implementations,” Elektronika Ir Elektrotechnika, vol. 25, no. 6, pp. 40–47, Dec. 2019. DOI: 10.5755/j01.eie.25.6.24825
  • [19]. D. Ghaderı and G. Bayrak, “A Novel Step Up Power Converter Configuration for Solar Energy Application,” Elektronika Ir Elektrotechnika, vol. 3, no. 25, pp. 50–55, Jun. 2019. DOI: 10.5755/j01.eie.25.3.23676
  • [20]. D. Ghaderı, M. Çelebi, M. R. Minaz, and M. Tören, “Efficiency Improvement for a DC DC Quadratic Power Boost Converter by Applying a Switch Turn off Lossless Snubber Structure Based on Zero Voltage Switching ZVS ,” Elektronika Ir Elektrotechnika, vol. 24, no. 3, pp. 15–22, Jun. 2018. DOI: 10.5755/j01.eie.24.3.20977
  • [21]. Asim Amir, Hang Seng Che, Aamir Amir, Ahmad El Khateb, Nasrudin Abd Rahim, Transformerless high gain boost and buck-boost DC-DC converters based on extendable switched capacitor (SC) cell for stand-alone photovoltaic system, Solar Energy, Volume 171, 2018, Pages 212-222, ISSN 0038-092X, DOI :10.1016/j.solener.2018.06.078.
  • [22]. N. A. Rahim, A. Amir, A. El Khateb, H. S. Che and A. Amir, "Gain and efficiency analysis of 2-stage switched capacitor (SC) boost based dc-dc converter," 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, 2016, pp. 1-5, DOI: 10.1049/cp.2016.1312.
  • [23]. H. Rezk, M. Aly, M. Al-Dhaifallah and M. Shoyama, "Design and Hardware Implementation of New Adaptive Fuzzy Logic-Based MPPT Control Method for Photovoltaic Applications," in IEEE Access, vol. 7, pp. 106427-106438, 2019, DOI: 10.1109/Access.2019.2932694.
APA BULUT K, Ghaderi (ertekin) d (2020). Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. , 1167 - 1190. 10.31202/ecjse.733167
Chicago BULUT Kübra,Ghaderi (ertekin) davood (davut) Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. (2020): 1167 - 1190. 10.31202/ecjse.733167
MLA BULUT Kübra,Ghaderi (ertekin) davood (davut) Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. , 2020, ss.1167 - 1190. 10.31202/ecjse.733167
AMA BULUT K,Ghaderi (ertekin) d Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. . 2020; 1167 - 1190. 10.31202/ecjse.733167
Vancouver BULUT K,Ghaderi (ertekin) d Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. . 2020; 1167 - 1190. 10.31202/ecjse.733167
IEEE BULUT K,Ghaderi (ertekin) d "Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations." , ss.1167 - 1190, 2020. 10.31202/ecjse.733167
ISNAD BULUT, Kübra - Ghaderi (ertekin), davood (davut). "Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations". (2020), 1167-1190. https://doi.org/10.31202/ecjse.733167
APA BULUT K, Ghaderi (ertekin) d (2020). Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. El-Cezerî Journal of Science and Engineering, 7(3), 1167 - 1190. 10.31202/ecjse.733167
Chicago BULUT Kübra,Ghaderi (ertekin) davood (davut) Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. El-Cezerî Journal of Science and Engineering 7, no.3 (2020): 1167 - 1190. 10.31202/ecjse.733167
MLA BULUT Kübra,Ghaderi (ertekin) davood (davut) Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. El-Cezerî Journal of Science and Engineering, vol.7, no.3, 2020, ss.1167 - 1190. 10.31202/ecjse.733167
AMA BULUT K,Ghaderi (ertekin) d Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. El-Cezerî Journal of Science and Engineering. 2020; 7(3): 1167 - 1190. 10.31202/ecjse.733167
Vancouver BULUT K,Ghaderi (ertekin) d Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations. El-Cezerî Journal of Science and Engineering. 2020; 7(3): 1167 - 1190. 10.31202/ecjse.733167
IEEE BULUT K,Ghaderi (ertekin) d "Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations." El-Cezerî Journal of Science and Engineering, 7, ss.1167 - 1190, 2020. 10.31202/ecjse.733167
ISNAD BULUT, Kübra - Ghaderi (ertekin), davood (davut). "Maximum Power Point Tracking by the Small-Signal-Based PI and Fuzzy Logic Controller Approaches for a Two-stage Switched-Capacitor DC-DC Power Boost Converter; Applicable for Photovoltaic Utilizations". El-Cezerî Journal of Science and Engineering 7/3 (2020), 1167-1190. https://doi.org/10.31202/ecjse.733167