Yıl: 2019 Cilt: 34 Sayı: 3 Sayfa Aralığı: 1143 - 1153 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.460509 İndeks Tarihi: 03-01-2021

Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi

Öz:
Son yıllarda oldukça dikkat çeken mikroalgler sağlık, gıda, kozmetik, çevre ve biyoyakıt üretimi alanlarındakullanım potansiyeli bulunan yeni nesil hammadde kaynaklarıdır. Bu çalışmada, hem bulunma miktarı hemde fonksiyonları bakımından önemli bir mikroalg sınıfı olan diatomların eldesi hedeflenerek, MarmaraDenizi Mudanya kıyılarından toplanan su örnekleri üzerinde izolasyon çalışması gerçekleştirilmiş ve eldeedilen izolatın moleküler analizi yapılarak Pleurosigma sp. olduğu tespit edilmiştir. İzole Pleurosigma sp.farklı konsantrasyonlarda azot, fosfor ve silisyum içeren besin solüsyonlarında yetiştirilip istatistiksel olarakyorumlandığında, diatomun hücre yoğunluğunun, silisyum ve azot artışı ile belirgin şekilde pozitifkorelasyon gösterdiği, ancak hücre yoğunluğunun 0,0096 mM fosfat konsantrasyonunda maksimumseviyeye ulaştığı gözlenmiştir. Yapılan karakterizasyon çalışmalarında, diatomun önemli miktardasilisyumlu yapılar içerdiği ve kül içeriğinin yüksek olduğu, yağ asidi profilinin literatürde diatomlardasıklıkla karşılaşılan yağ asitleriyle örtüştüğü görülmüştür.
Anahtar Kelime:

Marine diatom isolation, identification and investigation of nutrient effects on the diatom growth

Öz:
Microalgae are new generation raw material resources that have been attracting much attention in recent years and have utilization potential in health, food, cosmetics, environment and biofuel production areas. In this study, diatoms, an important microalgal group both due to their abundance and functions, were targeted and an isolation study was carried out with the water samples collected from the Mudanya shores of the Marmara Sea. Isolated diatom was identified as Pleurosigma sp. by DNA sequencing. Diatom’s cell density showed statistically positive correlation with increase in silicon and nitrogen when isolated Pleurosigma sp. was cultivated in nutrient solutions containing nitrogen, phosphorus and silicon at different concentrations, but cell density was observed to reach a maximum level at 0.0096 mM phosphate concentration. In the characterization studies, it was observed that the diatom contained significant amounts of ash and silica and diatom’s fatty acid profile overlapped with the fatty acid profiles of the frequently studied diatoms in literature.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Brennan L., Owende P., Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co- products, Renewable and Sustainable Energy Reviews, 14 (2), 557-577, 2010.
  • 2. Kim S., Handbook of Marine Microalgae, First Edition, Elseiver Inc., San Diego, 2015.
  • 3. Baicha Z., Salar-García M.J., Ortiz-Martínez V.M., Hernández-Fernández F.J., Ríos A.P., Labjar N., Lotfi E., Elmahi M., A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells, Fuel Processing Technology 154, 104-116, 2016.
  • 4. Tandon P., Jin Q., Microalgae culture enhancement through key microbial approaches, Renewable and Sustainable Energy Reviews, 80, 1089-1099, 2017.
  • 5. Ejike E. C. C., Collins S. A., Balasuriya N., Swanson A. K., Mason B., Udenigwe C. C., Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health, Trends in Food Science & Technology, 59, 30-36, 2017.
  • 6. Pina-Pérez M. C., Rivas A., Martínez A., Rodrigo D., Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food, Food Chemistry, 235, 34-44, 2017.
  • 7. Raven J.A., Waite A.M., The evolution of silicification in diatoms: inescapable sinking and sinking as escape, New Phytologist, 162, 45–61, 2004.
  • 8. Fuhrmann T., Lanwehr S., El Rharbi – Kucki M. ve Sumper, M., Diatoms as living photonic crystals, Applied Physics, 82, 909–965, 1997.
  • 9. Round F. R., Crawford R. M., Mann D.G., The Diatoms: Biology and Morphology of the Genera, Cambridge University Press, Cambridge, 1990.
  • 10. Dolatabadi J. E. N., Guardia M., Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures, Trends in Analytical Chemistry, 30 (9), 1539-1548, 2011.
  • 11. Chew K. W., Yap J. Y., Show P. L., Suan N. H., Juan J. C., Ling T. C., Lee D., Chang J., Microalgae biorefinery: high value products perspectives, Bioresource Technology, 229, 53-62, 2017.
  • 12. Spolaore P., Cassan C. J., Duran E., Isambert A., Commercial applications of microalgae, Journal of Bioscience and Bioenginering, 101, 87 96, 2006.
  • 13. Chisti Y., Biodiesel from microalgae, Biotechnology Advances, 25, 294-306, 2007.
  • 14. Oncel S. S., Microalgae for a macroenergy world, Renewable and Sustainable Energy Reviews, 26, 241- 264, 2013.
  • 15. Gong M., Bassi A., Carotenoids from microalgae: A review of recent developments, Biotechnology Advances, 34(8):1396-1412, 2016.
  • 16. Crawford M. A., Costeloe K., Ghebremeskel K., Phylactos A., Skirvin L., Stacey F., Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies, The American Journal of Clinical Nutrition, 66, 1032- 44, 1997.
  • 17. Gupta A., Barrow C. J., Puri M., Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils, Biotechnology Advances, 30, 1733-1745, 2012.
  • 18. Rubio-Rodriguez N., Beltran S., Jaime I., Diego S. M., Sanz M. T., Carballido J. R., Production of omega-3 polyunsaturated fatty acid concentrates: A review, Innovative Food Science and Emerging Technologies, 11, 1-12, 2010.
  • 19. Lebeau T., Robert J. M., Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products, Applied Microbiology and Biotechnology, 60, 624–632, 2003.
  • 20. Parkinson J., Gordon R., Beyond micromachining: the potential of diatoms, Tibtech, 17:190-196, 1999.
  • 21. Rawat I., Kumar R.R., Mutanda T., Bux F., Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Applied Energy, 103, 444- 467, 2013.
  • 22. Scholz B., Liebezeit G., Growth responses of 25 benthic marine Wadden Sea diatoms isolated from the Solthörn tidal flat (southern North Sea) in relation to varying culture conditions, Diatom Research, 27 (1), 65–73, 2012.
  • 23. Andersen R. A., Algal Culturing Techniques, Elseiver Academic Press, Hong Kong, 2005.
  • 24. Mutanda T., Ramesh D., Karthikeyan S., Kumari S., Anandraj A., Bux F., Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresource Technology, 102, 57–70, 2011.
  • 25. Paasche E., A simple method for establishing bacteria free cultures of phototactic flagellates, Conseil International pour l'Exploration de la Mer., 33, 509–511, 1971.
  • 26. Fröhlich J., Kornig H., New techniques for isolation of single prokaryotic cells, Federation of European Microbiological Societies Microbiology Reviews, 24, 567-572, 2000.
  • 27. Jacobsen C., Nielsen N.S., Horn A. F., Sorensen A., M., Food Enrichment with omega-3 Fatty Acids, First Edition, Woodhead Publishing Limited, Cambridge, 2013.
  • 28. Jones A. K., Rhodes M. E., Evans S. C., The use of antibiotics to obtain axenic cultures of algae, British Phycological Journal, 8, 2, 185-196, 1973.
  • 29. Heaney S. I., Jaworski, G. H. M., A simple separation technique for purifying micro-algae, British Phycological Journal, 12, 2, 171-174, 1977.
  • 30. Howarth R., Marino R., Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades, Limnology and Oceanography, 51, 364–376, 2006.
  • 31. Juneja A., Ceballos R.M., Murthy G.S., Effects of Enviromental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review, Energies, 6, 4607-4638, 2013.
  • 32. Gordillo F. J. L., Jiménez C., Figueroa F. L., Niell F. X., Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira), Journal of Applied Phycology, 10, 461–469, 1998.
  • 33. Schindler D. W., Evolution of phosphorus limitation in lakes, Science, 195, 260–262, 1977.
  • 34. Geider R.J., La Roche J., Redfield revisited: variability of C: N:P in marine microalgae and its biochemical basis, European Journal of Phycology, 37 (01), 1-17, 2002.
  • 35. Powell N., Shilton A., Chisti Y., Pratt S., Towards a luxury uptake process via microalgae – Defining the polyphosphate Dynamics, Water Research, 43, 4207– 4213, 2009.
  • 36. Thamatrakoln K., Hildebrand M., Silicon uptake in diatoms revisited, a model forsaturable and nonsaturable uptake kinetics and the role of silicon transporters, Plant Physiopgy. 146, 1397–1407, 2008.
  • 37. Javaheri N., Dries R., Burson A., Stal L. J., Sloot P. M. A., Kaandorp J. A., Temperature affects the silicate morphology in a diatom, Nature, 5, 11652-11661, 2015.
  • 38. Taguchi S., Hirata J.A., Laws E.A., Silicate deficiency and lipid synthesis of marine diatoms, Journal of Phycology, 23, 260–267, 1987.
  • 39. Wen Z.Y., Chen F., Heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis: effects of silicate and glucose, Journal of Industrial Microbiology and Biotechnology, 25, 218–224, 2000.
  • 40. Coombs J., Halicki P. J., Holm-Hansen O., Volcani B. E., Studies on the biochemistry and fine structure of silicate shell formation in diatoms: II. Changes in concentration of nucleoside triphosphates in siliconstarvation synchrony of Navicula pelliculosa (Breb.) Hilse, Experimental Cell Research, 47, 315– 28, 1967.
  • 41. Ramanna L., Rawat I., Bux F., Light enhancement strategies improve microalgal biomass productivity, Renewable and Sustainable Energy Reviews 80, 765– 773, 2017.
  • 42. Ras M., Steyer J., Bernard O., Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology, Springer, 12 (2), 153-164, 2013.
  • 43. Morris I., Glover H., Yentsch C., Products of photosynthesis by marine phytoplankton: The effect of environmental factors on the relative rates of protein synthesis, Marine Biology, 27, 1–9, 1974.
  • 44. Razzak S., Hossain M. M., Lucky R. A., Bassi A. S., de Lasa H., Integrated CO2 capture, waste water treatment and biofuel production by microalgae culturing—A review, Renewable and Sustainable Energy Reviews, 27, 622–653, 2013.
  • 45. Hinga K.R., Co-occurrence of dinoflagellate blooms and high pH in marine enclosures, Marine Ecology Progress Series, 86, 181–187, 1992.
  • 46. Kumar K., Mishra S. K., Shrivastav A., Park M. S., Yang J., Recent trends in the mass cultivation of algae in raceway ponds, Renewable and Sustainable Energy Reviews, 51, 875–885, 2015.
  • 47. Richmond A., Biological Principles of Mass Cultivation, In:Handbook of Microalgal Culture:Biotechnology and Applied Phycology (Ed. A. Richmond), CRC Press, Inc., Boca Raton, 125-178, 2004.
  • 48. Qi-hua W., Mei L., Shu-hong W., Ming-jin D., Ya-juan L., Ai-hua C., Studies on culture conditions of benthic diatoms for feding abalone II. Effects of salinity, Ph, nitrogenous and phosphate nutrients on growth rate, Chinese Journal of Oceanology and Limnology, 16 (1), 78-83, 1998.
  • 49. Khan S., Haque M. M., Arakawa O., Onoue Y., The influence of nitrogen and phosphorus on the growth of a diatom Skeletonema costatum (Greville) Cleve, Journal Profile: Bangladesh Journal of Fisheries Research, 2 (1), 23-29, 1998.
  • 50. Yodsuwan N., Sawayama S., Sirisansaneeyakul S., Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum, Agriculture and Natural Resources, 51, 190-197, 2017.
  • 51. Yang M., Zhao W., Xie X., Effects of nitrogen, phosphorus, iron and silicon on growth of five species of marine benthic diatoms, Acta Ecologica Sinica, 34, 311–319, 2014.
  • 52. Hemalatha A., Karthikeyan K. P., Girija K., Saranya C., Anantharaman P., Sampathkumar P., Effect of nutrients on the growth and biochemical composition of the marine diatom, Chaetoceros Simplex (Ostenfeld, 1901), 5 (1), 30-35, 2014.
  • 53. Katiyar D., Lall A. M., Singh B., Effect of phosphate on growth of diatoms, Indian Journal of Scientific Research, 1 (2), 103-106, 2010.
  • 54. Admiral W., Tolerance of estuarine benthic diatoms ti high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate, 43, 307-315, 1977.
  • 55. Venkataraman G. S., The cultivation of algae, Indian Council of Agricultural Research, New Delhi, 1964.
  • 56. Ketchum B. H., Mineral nutrition of phytoplankton, Annual Review Phytoplankton Physiology, 5, 55-74, 1954.
  • 57. Hillebrand H., Sommer U., Effect of continuous nutrient enrichment on microalgae colonizing hard substrates”, Hydrobiologia, 426, 185–192, 2000.
  • 58. Ke Z., Tan Y., Ma Y., Huang L., Wang S., Effects of surface current patterns on spatial variations of phytoplankton community and environmental factors in Sunda shelf, Continental Shelf Research, 82, 119-127, 2014.
  • 59. Parsons T. R., Stephens K., Strickland J.D. H., On the chemical composition of eleven species of marine phytoplankton, Journal of the Fisheries Research Board of Canada, 18, 1001-16, 1961.
  • 60. Myklestad S., Haug A., Production of Carbohydrates by marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I.Effect of the concentration of nutrients in the culture medium, Journal of Experimental Marine Biology and Ecology, 9, 125-136, 1972.
  • 61. Brown M. R., Dunstan G. A., Norwood S. J., Miller, K. A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, Journal of Phycology, 32, 64-73, 1996.
  • 62. Karpenyuk T. A., Orazova S. B., Dzhokebaeva S. A., Goncharova A. V., Tzurkan Y. S., Analysis of Microalgae Lipids Isolated from Basin of Kazakhstan, to Assess the Prospects of Practical Use, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 7 (7), 746-748, 2013.
  • 63. Zimmerman J., Jahn R., Gemeinholzer B., Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols, Organisms Diversity&Evolution, 11, 173-192, 2011.
  • 64. Luddington A., Kaczmarska I., Lovejoy, C., Distance and Character-Based Evaluation of the V4Region of the 18S rRNA Gene for the Identification of Diatoms (Bacillariophyceae), Public Library of Science ONE, 7 (9), 1-11, 2012 .
  • 65. Zhang Z., Schwartz S., Wagner L., Miller, W., A greedy algorithm for aligning DNA sequences, Journal of Computational Biology 7 (1-2), 203-14, 2000.
  • 66. Morgulis A., Coulouris G., Raytselis Y., Madden T. L., Agarwala R., Schäffer A. A., Database Indexing for Production MegaBLAST Searches, Bioinformatics 24, 1757-1764, 2008.
  • 67. Çinar, S., Denizel Diatom İzolasyonu, Tanımlanması ve Besin Maddelerinin Diatom Büyümesi Üzerine Etkisinin İncelenmesi, Yüksek Lisans Tezi, YTÜ, Kasım 2017.
  • 68. Pahl S. L., Lewis D. M., Chen F., King K. D., Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom Cyclotella cryptica, Journal of Applied Phycology, 22, 165–171, 2010.
  • 69. Simental-Trinidad J. A., Sanchez-Saavedra M. P., Correa- Reyes J. G., Biochemical composition of benthic marine diatoms using as culture medium agricultural fertilizer, Journal of Shellfish Research, 2, 611-617, 2001.
  • 70. De Angelis R., Melino S., Prosposito P., Casalboni M., Lamastra F. R., Nanni F., Bruno L., Congestri R., The diatom Staurosirella pinnata for photoactive material production, Public Library of Science ONE, 1-17, 2016.
  • 71. De Stefano, L., Rendina I., De Stefano M., Bismuto A., Maddalena P., Marine diatoms as optical chemical sensors, Applied Physics Letters, 87, 233902-3, 2005.
  • 72. Lambert J. B., Shurvell H. F., Cooks G., Introduction to organic spectroscopy, Macmillian, New York, 174-177, 1987.
  • 73. Zhang J., Ding T., Zhang Z., Xu L., Zhang C., Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells, Public Library of Science ONE, 1-18, 2015.
  • 74. Xia S., Gao B., Li A., Xiong J., Ao Z., Zhang, C., Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita, Marine Drugs, 12:4883-4897, 2014.
  • 75. Brown M. R., Dunstan G. A., Norwood S. J., Miller K. A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, Journal of Phycology, 32:64-73, 1996.
  • 76. Coombs J., Halicki P. J., Holm-Hansen O., Volcani B. E., Studies on the biochemistry and fine structure of silicate shell formation in diatoms: II. Changes in concentration of nucleoside triphosphates in siliconstarvation synchrony of Navicula pelliculosa (Breb.) Hilse, Experimental Cell Research, 47:315– 28, 1967.
  • 77. Chen Y., Immobilization of twelve benthic diatom species for long-term storage and as feed for post-larval abalone Haliotis diversicolor, Aquaculture, 263:97-106, 2006.
  • 78. Karpenyuk T. A., Orazova S. B., Dzhokebaeva S. A., Goncharova A. V., Tzurkan Y. S., Analysis of Microalgae Lipids Isolated from Basin of Kazakhstan, to Assess the Prospects of Practical Use, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 7 (7):746-748, 2013.
  • 79. Marella T. K., Parine B. R., Tiwari A., Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water, Saudi Journal of Biological Sciences, 25(4):704-709, 2018.
  • 80. Volkman J. K., Jeffrey S. W., Nichols P. D., Rogers G. I., Garland C. D., Fatty acid and lipid composition of 10 species of microalgae used in mariculture, Journal of Experimental Marine Biology and Ecology, 128:219- 240, 1989.
  • 81. Tsurkan Y., Karpenyuk T., Guschina I., Orazova S., Goncharova A., Beisembaeva R., Identification of newly-isolated microorganisms containing valuable polyunsaturated fatty acids, Journal of Biotech Research, 6:14-20, 2015.
  • 82. Hoffmann L. J., Peeken I., Lochte K., Co-limitation by iron, silicate, and light of three Southern Ocean diatom species, Biogeosciences Discuss, 4: 209–247, 2007.
  • 83. Bowler C., Martino A., Falciatore A., Diatom cell division in an environmental context, Current Opinion in Plant Biology, 13, 623–630, 2010.
  • 84. Burnett J. H., Baker H. G., Beevers H., Whatley F. R., The Biology of Diatoms (Ed. Werner, D.), University of California Press, California, 111,142, 1977.
  • 85. Turpin V., Robert J., Goulletquer P., Limiting nutrients of oyster pond seawaters in the Marennes-Oléron region for Haslea ostrearia: applications to the mass production of the diatom in mesocosm experiments, Aquatic Living Resources 12 (5), 335−342, 1999.
  • 86. Qi-hua W., Ya-juan L., Mei L., Studies on culture conditions of benthic diatoms for feding abalone III. Effects of iron and silicon nutrients and of orthogonal combinations of nitrogen, phosphorus, iron and silicon on growth rate, Chinese Journal of Oceanology and Limnology, 17 (2), 105-111, 1999.
  • 87. Jorgensen E., Effects of different silicon concentrations on the growth of diatoms, Physiologia Plantahum, 5:161-170, 1952.
  • 88. Stevenson R. J., Hill B. H., Herlihy A. T., Algae–P relationships, thresholds, and frequency distributions guide nutrient criterion development, Journal of the North American Benthological Society, 27 (3):783–799, 2008.
APA CINAR S, Özçimen D, Yilmaz M (2019). Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. , 1143 - 1153. 10.17341/gazimmfd.460509
Chicago CINAR SAIT,Özçimen Didem,Yilmaz Mete Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. (2019): 1143 - 1153. 10.17341/gazimmfd.460509
MLA CINAR SAIT,Özçimen Didem,Yilmaz Mete Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. , 2019, ss.1143 - 1153. 10.17341/gazimmfd.460509
AMA CINAR S,Özçimen D,Yilmaz M Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. . 2019; 1143 - 1153. 10.17341/gazimmfd.460509
Vancouver CINAR S,Özçimen D,Yilmaz M Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. . 2019; 1143 - 1153. 10.17341/gazimmfd.460509
IEEE CINAR S,Özçimen D,Yilmaz M "Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi." , ss.1143 - 1153, 2019. 10.17341/gazimmfd.460509
ISNAD CINAR, SAIT vd. "Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi". (2019), 1143-1153. https://doi.org/10.17341/gazimmfd.460509
APA CINAR S, Özçimen D, Yilmaz M (2019). Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), 1143 - 1153. 10.17341/gazimmfd.460509
Chicago CINAR SAIT,Özçimen Didem,Yilmaz Mete Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no.3 (2019): 1143 - 1153. 10.17341/gazimmfd.460509
MLA CINAR SAIT,Özçimen Didem,Yilmaz Mete Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.34, no.3, 2019, ss.1143 - 1153. 10.17341/gazimmfd.460509
AMA CINAR S,Özçimen D,Yilmaz M Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2019; 34(3): 1143 - 1153. 10.17341/gazimmfd.460509
Vancouver CINAR S,Özçimen D,Yilmaz M Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2019; 34(3): 1143 - 1153. 10.17341/gazimmfd.460509
IEEE CINAR S,Özçimen D,Yilmaz M "Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34, ss.1143 - 1153, 2019. 10.17341/gazimmfd.460509
ISNAD CINAR, SAIT vd. "Denizel diatom izolasyonu, tanımlanması ve besin maddelerinin diatom büyümesi üzerine etkisinin incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/3 (2019), 1143-1153. https://doi.org/10.17341/gazimmfd.460509