Yıl: 2020 Cilt: 8 Sayı: 1 Sayfa Aralığı: 589 - 607 Metin Dili: İngilizce DOI: 10.29130/dubited.577659 İndeks Tarihi: 07-01-2021

Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration

Öz:
Railway-induced vibrations are one of the major problems that need to be suppressed for the passengers or peoplewho are living around the railway. It is essential that the vibrations are first tried to be suppressed on the source,railway. Thus, the railway superstructure components contain various elastic elements used in vibration insulation,such as rail pads. In this study, two different railway superstructures used in Istanbul railway traffic were testedwhile passing the railway vehicle at various speeds, and the vibrations generated by the wheel-rail interaction werecompared regarding passenger comfort and the environment in compliance with the relevant standards. Usedrailway superstructures to compare the propagated vibrations are constructions with single and double elastomericlayers installed on the same line, sequentially. In this experimental benchmarking study which contains someevaluations according to standards, the behaviour of these two railway superstructure types in terms of vibrationinsulation in light metro lines is revealed using measurement results. Consequently, when the double-layeredelastomer is used instead of a single-layered in the superstructure, the comfort level of the people living aroundthe line is improved as up to 64% and the comfort level of the passengers is improved as up to 54%. In addition,in terms of the safety investigations of the buildings around the line, a meaningful decrease in vibrations greaterthan 70 Hz is observed and it is concluded that residential buildings could be built up to 5 m distance.
Anahtar Kelime:

İstanbul Trafiğinde Bulunan İki Farklı Hafif Metro Üstyapısının Titreşim Bakımından Karşılaştırmalı Analizi

Öz:
Demiryoluna bağlı titreşimler, yolcuların veya demiryolunun çevresinde yaşayan insanlar için bastırılması gereken en önemli sorunlardan biridir. Titreşimlerin öncelikle kaynakta, yani demiryolu üzerinde bastırılmaya çalışılması esastır. Bu nedenle, demiryolu üst yapı bileşenleri, titreşim yalıtımında kullanılan ray pedleri gibi çeşitli elastik elemanlar içerir. Bu çalışmada, İstanbul demiryolu trafiğinde kullanılan iki farklı demiryolu üst yapısı, demiryolu aracı çeşitli hızlarda geçerken test edildi ve tekerlek-ray etkileşiminin oluşturduğu titreşimler, yolcu konforu ve çevre ile ilgili standartlara uygun olarak karşılaştırıldı. Yayılan titreşimleri karşılaştırmak için aynı hat üzerinde yerleştirilmiş tek ve çift elastomerik tabakalara sahip demiryolu üstyapıları kullanılmıştır. Standartlara göre bazı değerlendirmeler içeren bu deneysel kıyaslama çalışmasında, bu iki demiryolu üst yapı tipinin hafif metro hatlarında titreşim yalıtımı açısından davranışları ölçüm sonuçları kullanılarak ortaya konmuştur. Sonuç olarak, üstyapıda tek katman yerine çift katmanlı elastomer kullanıldığında, hat çevresinde yaşayan insanların konfor seviyelerinde %64’e, araç içerisinde bulunan yolcuların konfor seviyelerinde ise %54 varan iyileşme gerçekleşmiştir. Ayrıca, hat çevresinde bulunan binaların güvenliği bakımından yapılan araştırmada 70 HZ’den büyük titreşimlerde anlamlı bir azalma gözlenmiş ve hatta en az 5 m mesafeye kadar konut amaçlı bina yapılabileceği sonucuna ulaşılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Metro İstanbul A.Ş. (2018, March 18). Hakkimizda. [Online]. Available: https://www.metro.istanbul/icerik/hakkimizda
  • [2] J. A. Forrest, "Modelling of ground vibration from underground railways," Ph.D. dissertation, University of Cambridge, 1999.
  • [3] A. Garinei, G. Risitano, L. Scappaticci, and F. J. M. Castellani, "An optimized method to evaluate the performance of trench isolation for railway-induced vibration," Measurement, vol. 94, pp. 92-102, 2016.
  • [4] D. Connolly, A. Giannopoulos, W. Fan, P. Woodward, M. J. C. Forde, and B. Materials, "Optimising low acoustic impedance back-fill material wave barrier dimensions to shield structures from ground borne high speed rail vibrations," Construction and Building Materials, vol. 44, pp. 557- 564, 2013.
  • [5] N. Hamdan, O. Laghrouche, P. K. Woodward, M. J. C. Mahmood, and B. Materials, "Ground vibration reduction analysis using a frequency-domain finite element approach," Construction and Building Materials, vol. 92, pp. 95-103, 2015.
  • [6] A. Dijckmans et al., "Mitigation of railway induced ground vibration by heavy masses next to the track," Soil Dynamics and Earthquake Engineering, vol. 75, pp. 158-170, 2015.
  • [7] Y. J. M. Dere, "Effectiveness of the floating slab track system constructed at Konya Light Rail," Measurement, vol. 89, pp. 48-54, 2016.
  • [8] F. Cui and C. J. A. A. Chew, "The effectiveness of floating slab track system—Part I. Receptance methods," Applied Acoustics, vol. 61, no. 4, pp. 441-453, 2000.
  • [9] M. Sol-Sánchez, F. Moreno-Navarro, M. C. J. C. Rubio-Gámez, and b. materials, "The use of elastic elements in railway tracks: A state of the art review," Construction and Building Materials, vol. 75, pp. 293-305, 2015.
  • [10] W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, S. Kaewunruen, and A. J. C. S. Remennikov, "Composite railway sleepers–Recent developments, challenges and future prospects," Composite Structures, vol. 134, pp. 158-168, 2015.
  • [11] K. Knothe and S. J. V. s. d. Grassie, "Modelling of railway track and vehicle/track interaction at high frequencies," Vehicle System Dynamics, vol. 22, no. 3-4, pp. 209-262, 1993.
  • [12] D. I. f. Normung, "DIN 4150-2: Structural vibrations–Part 2: Human exposure to vibration in buildings," German Standards Organization (GSO) Berlin, 1999.
  • [13] Structural vibration Part 3: Effects of vibration on Structures, G. S. DIN, 1999.
  • [14] Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements, I.-J. I. O. f. Standardization, 1997.
  • [15] ISO 2631-2: Mechanical vibration and shock—Evaluation of human exposure to whole–body vibration—Part 2: Vibration in buildings (1 Hz to 80 Hz), I. O. f. Standardization, 2003.
  • [16] G. Kouroussis, C. Conti, O. J. M. Verlinden, and Industry, "Building vibrations induced by human activities: a benchmark of existing standards," Mechanics & Industry, vol. 15, no. 5, pp. 345- 353, 2014.
  • [17] P. Wang, K. Wei, L. Wang, J. J. P. o. t. I. o. M. E. Xiao, Part F: Journal of Rail, and R. Transit, "Experimental study of the frequency-domain characteristics of ground vibrations caused by a highspeed train running on non-ballasted track," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 230, no. 4, pp. 1131-1144, 2016.
  • [18] W. Gong, M. J. J. P. o. t. I. o. M. E. Griffin, Part F: Journal of Rail, and R. Transit, "Measuring, evaluating and assessing the transmission of vibration through the seats of railway vehicles," vol. 232, no. 2, pp. 384-395, 2018.
  • [19] C. Zou, Y. Wang, P. Wang, and J. J. S. o. t. T. E. Guo, "Measurement of ground and nearby building vibration and noise induced by trains in a metro depot," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 536, pp. 761-773, 2015.
  • [20] E. Celebi and G. J. E. S. Schmid, "Investigation of ground vibrations induced by moving loads," Engineering Structures, vol. 27, no. 14, pp. 1981-1998, 2005.
  • [21] G. Kouroussis, G. Gazetas, I. Anastasopoulos, C. Conti, O. J. S. D. Verlinden, and E. Engineering, "Discrete modelling of vertical track–soil coupling for vehicle–track dynamics," Soil Dynamics and Earthquake Engineering, vol. 31, no. 12, pp. 1711-1723, 2011.
  • [22] M. J. B. S. Bata, "Effects on buildings of vibrations caused by traffic," Building Science, vol. 6, no. 4, pp. 221-246, 1971.
  • [23] P. A. Costa, R. Calçada, A. S. J. S. D. Cardoso, and E. Engineering, "Ballast mats for the reduction of railway traffic vibrations. Numerical study," Soil Dynamics and Earthquake Engineering, vol. 42, pp. 137-150, 2012.
  • [24] P. Lopes, P. A. Costa, M. Ferraz, R. Calçada, A. S. J. S. D. Cardoso, and E. Engineering, "Numerical modeling of vibrations induced by railway traffic in tunnels: From the source to the nearby buildings," Soil Dynamics and Earthquake Engineering, vol. 61, pp. 269-285, 2014.
  • [25] M. Valikhani and D. J. M. Younesian, "Application of an optimal wavelet transformation for rail-fastening system identification in different preloads," Measurement, vol. 82, pp. 161-175, 2016.
  • [26] G. Kouroussis, O. Verlinden, and C. J. V. S. D. Conti, "Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic," Vehicle System Dynamics, vol. 50, no. 4, pp. 619-639, 2012.
  • [27] V. A.G. (2019, January 01). DFF 21. Available: https://www.vossloh.com/en/products-andsolutions/product-finder/product_11013.php.
  • [28] V. A.G. (2019, January 01). System 336. Available: https://www.vossloh.com/en/products-andsolutions/product-finder/product_10947.php.
APA Metin M, Ulu A (2020). Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. , 589 - 607. 10.29130/dubited.577659
Chicago Metin Muzaffer,Ulu Arif Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. (2020): 589 - 607. 10.29130/dubited.577659
MLA Metin Muzaffer,Ulu Arif Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. , 2020, ss.589 - 607. 10.29130/dubited.577659
AMA Metin M,Ulu A Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. . 2020; 589 - 607. 10.29130/dubited.577659
Vancouver Metin M,Ulu A Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. . 2020; 589 - 607. 10.29130/dubited.577659
IEEE Metin M,Ulu A "Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration." , ss.589 - 607, 2020. 10.29130/dubited.577659
ISNAD Metin, Muzaffer - Ulu, Arif. "Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration". (2020), 589-607. https://doi.org/10.29130/dubited.577659
APA Metin M, Ulu A (2020). Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(1), 589 - 607. 10.29130/dubited.577659
Chicago Metin Muzaffer,Ulu Arif Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8, no.1 (2020): 589 - 607. 10.29130/dubited.577659
MLA Metin Muzaffer,Ulu Arif Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol.8, no.1, 2020, ss.589 - 607. 10.29130/dubited.577659
AMA Metin M,Ulu A Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020; 8(1): 589 - 607. 10.29130/dubited.577659
Vancouver Metin M,Ulu A Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2020; 8(1): 589 - 607. 10.29130/dubited.577659
IEEE Metin M,Ulu A "Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration." Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, ss.589 - 607, 2020. 10.29130/dubited.577659
ISNAD Metin, Muzaffer - Ulu, Arif. "Comparative Analysis of Two Different Light Rail Superstructures in Istanbul Traffic in Terms of Vibration". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/1 (2020), 589-607. https://doi.org/10.29130/dubited.577659