Yıl: 2020 Cilt: 70 Sayı: 1 Sayfa Aralığı: 19 - 27 Metin Dili: İngilizce DOI: 10.5152/forestist.2020.19026 İndeks Tarihi: 26-11-2020

Research on Surirella brebissonii as a biofuel alternative

Öz:
Research on diatoms is generally limited to the academic studies, and it has attracted little attention for biotechnological fields such as biofuels, pharmaceuticals, and biomolecules. In this study, Surirella brebissonii was identified systematically, using standardized methodologies and molecular analysis of 18S rDNA. Consequently, this diatom was cultivated under F/2 nitrogen limitation medium to monitor the growth, biomass productivity, lipid content and fatty acid methyl ester (FAME) components to use in biofuel purpose. To evaluate it as a biofuel resource, fatty acid profiles of this strain were compared with edible oils (soybean and palm) and other microalgae candidates. The results demonstrated that S. brebissonii has great potential in lipid and saturated fatty acid (SFA) production by 45.63±0.03 (%DW) and 49.6 (%WT), respectively.
Anahtar Kelime:

Biyoyakıt alternatifi olarak Surirella brebissonii üzerine araştırma

Öz:
Diyatomlar üzerine genellikle akademik çalışmalar sınırlıdır ve biyoyakıtlar, farmasötikler ve biyomoleküller gibi biyoteknolojik alanlara çok az ilgi çekilmiştir. Bu çalışmada Surirella brebissonii, standart yöntemler ve 18S rDNA'nın moleküler analizi kullanılarak sistematik olarak tanımlanmıştır. Sonuç olarak, bu diyatom, biyoyakıt amaçlı kullanılarak büyümeyi, biyokütle verimliliğini, lipit içeriğini ve yağ asidi metil ester (FAME) bileşenlerini izlemek için bir F/2 azot sınırlama ortamı altında yetiştirildi. Biyoyakıt kaynağı olarak değerlendirmek için, bu yağ asidi profilleri, yenilebilir yağlar (soya fasulyesi ve palmiye) ve diğer mikroalg adayları ile karşılaştırılmıştır. Sonuçlar S. brebissonii'nin lipit ve doymuş yağ asidi (SFA) üretiminde sırasıyla 45,63±0,03 (%DW) ve 49,6 (%WT) büyük bir potansiyele sahip olduğunu göstermiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abd El Baky, H.H., El-Baroty, G.S., 2013. Healthy benefit of microalgal bioactive substances. Journal of Aquatic Sciences 1(1): 11-23.
  • Adarme-Vega, T.C., Lim, D.K., Timmins, M., Vernen, F., Li, Y., Schenk, P.M., 2012. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories 11(1): 96. [CrossRef]
  • Bagul, S. Y., K Bharti, R., Dhar, D.W., 2017. Assessing biodiesel quality parameters for wastewater grown Chlorella sp. Water Science and Technology 76(3): 719-727. [CrossRef]
  • Bartley, M.L., Boeing, W.J., Dungan, B.N., Holguin, F.O., Schaub, T., 2014. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. Journal of Applied Phycology 26(3): 1431-1437. [CrossRef]
  • Batista, A.P., Gouveia, L., Bandarra, N.M., Franco, J.M., Raymundo, A., 2013. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research 2(2): 164-173. [CrossRef]
  • Becker, E.W., 2017. Nutritional properties of microalgae: potentials and constraints. In Handbook of Microalgal Mass Culture (1986) (pp. 339-420). CRC press.
  • Bux, F., 2013. Biotechnological applications of microalgae: biodiesel and value-added products. CRC Press. [CrossRef]
  • Carriquiry, M.A., Du, X., Timilsina, G.R., 2011. Second generation biofuels: Economics and policies. Energy Policy 39(7): 4222-4234. [CrossRef]
  • Chen, Y., Tang, X., Kapoore, R. V., Xu, C., Vaidyanathan, S., 2015. Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina. Energy Conversion and Management 106: 61-72. [CrossRef]
  • Chen, Z., Wang, L., Qiu, S., Ge, S., 2018. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Research International Article ID 1503126. [CrossRef]
  • Chiappe, C., Mezzetta, A., Pomelli, C. S., Iaquaniello, G., Gentile, A., Masciocchi, B., 2016. Development of cost-effective biodiesel from microalgae using protic ionic liquids. Green Chemistry 18(18): 4982-4989. [CrossRef]
  • Christina, L., Terbrüggen, A., Völker, C., Hohn, S., 2010. Response to and recovery from nitrogen and silicon starvation in Thalassiosira weissflogii: growth rates, nutrient uptake and C, Si and N content per cell. Marine Ecology Progress Series 412: 57-68. [CrossRef]
  • D’Ippolito, G., Sardo, A., Paris, D., Vella, F. M., Adelfi, M. G., Botte, P, Gallo Fontana, A., 2015. Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnology for Biofuels 8(1): 28. [CrossRef]
  • Danesh, A.F., Mooij, P., Ebrahimi, S., Kleerebezem, R., Loosdrecht, M., 2018. Effective Role of Medium Supplementation in Microalgal Lipid Accumulation. Biotechnology and Bioengineering 115(5): 1152-1160. [CrossRef]
  • Doan, T.T.Y., Sivaloganathan, B., Obbard, J.P., 2011. Screening of marine microalgae for biodiesel feedstock. Biomass and Bioenergy 35(7): 2534-2544. [CrossRef]
  • Duong, V.T., Thomas-Hall, S.R., Schenk, P.M., 2015. Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland-Australia. Frontiers in Plant Science 6: 359. [CrossRef]
  • Enzing, C., Ploeg, M., Barbosa, M., Sijtsma, L., 2014. Microalgae-based products for the food and feed sector: an outlook for Europe. JRC Scientific and Policy Reports 19-37.
  • Fu, W., Wichuk, K., Brynjólfsson, S., 2015. Developing diatoms for value-added products: Challenges and opportunities. New Biotechnology 32(6): 547-551. [CrossRef]
  • Ge, S., Champagne, P., Plaxton, W.C., Leite, G.B., Marazzi, F., 2017. Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production. Biofuels, Bioproducts and Biorefining 11(2): 325-343. [CrossRef]
  • Gopinath, A., Puhan, S., Nagarajan, G., 2009. Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223(4): 565-583. [CrossRef]
  • Gu, H., Jinkerson, R.E., Davies, F.K., Sisson, L.A., Schneider, P.E., Posewitz, M.C., 2016. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros ketoacyl-ACP synthase. Frontiers in Plant Science 7: 690. [CrossRef]
  • Halim, R., Gladman, B., Danquah, M.K., Webley, P.A., 2011. Oil extraction from microalgae for biodiesel production. Bioresource Technology 102(1): 178-185. [CrossRef]
  • Hamilton, M.L., Haslam, R.P., Napier, J.A., Sayanova, O., 2014. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metabolic Engineering 22: 3-9. [CrossRef]
  • Hariskos, I., Posten, C., 2014. Biorefinery of microalgae-opportunities and constraints for different production scenarios. Biotechnology Journal 9(6): 739-752. [CrossRef]
  • Harun, R., Singh, M., Forde, G.M., Danquah, M.K., 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews 14(3): 1037-1047. [CrossRef]
  • Islam, M., Magnusson, M., Brown, R., Ayoko, G., Nabi, M., Heimann, K., 2013. Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6(11): 5676-5702. [CrossRef]
  • Jiang, L., Luo, S., Fan, X., Yang, Z., Guo, R., 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy 88(10): 3336-3341. [CrossRef]
  • John, J., 2016. Diatoms from Stradbroke and Fraser Islands, Australia: taxonomy and biogeography. The diatom flora of Australia Volume 1. pp. [1]-377, 258 figs. Schmitten - Oberreifenberg: Koeltz Botanical Books.
  • Kallio, P., Pásztor, A., Akhtar, M.K., Jones, P.R., 2014. Renewable jet fuel. Current Opinion in Biotechnology 26: 50-55. [CrossRef]
  • Kasten, J., Kusber, W.H., Riedmüller, U., Tworeck, A., Oschwald, L., Mischke, U., 2018. Steckbriefe der Phytoplankton-Indikatortaxa in den WRRL-Bewertungsverfahren PhytoSee und PhytoFluss mit Begleittext. [CrossRef]
  • Kim, B.H., Ramanan, R., Cho, D.H., Choi, G.G., La, H.J., Ahn, C.Y., Kim, H.S., 2012. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS One 7(5): e37770. [CrossRef]
  • Kliphuis, A.M., Klok, A.J., Martens, D.E., Lamers, P.P., Janssen, M., Wijffels, R.H., 2012. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. Journal of Applied Phycology 24(2): 253-266. [CrossRef]
  • Klok, A.J., Martens, D.E., Wijffels, R.H., Lamers, P.P., 2013. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresource Technology 134: 233-243. [CrossRef]
  • Kociolek, J.P., Stepanek, J.G., Lowe, R.L., Johansen, J.R., Sherwood, A.R., 2013. Molecular data show the enigmatic cave-dwelling diatom Diprora (Bacillariophyceae) to be a raphid diatom. European Journal of Phycology 48(4): 474-484. [CrossRef]
  • Kumar, K., Dasgupta, C. N., Das, D., 2014. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology 167: 358-366. [CrossRef]
  • Lange-Bertalot, H., Hofmann, G., Werum, M., Cantonati, M., 2017. Freshwater benthic diatoms of Central Europe: Over 800 common species used in ecological assessment (p. 942). M. G. Kelly (Ed.). Schmitten-Oberreifenberg, Germany: Koeltz Botanical Books.
  • Lordan, S., Ross, R.P., Stanton, C., 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs 9(6): 1056-1100. [CrossRef]
  • Lu, C., Napier, J.A., Clemente, T.E., Cahoon, E.B., 2011. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Current Opinion in Biotechnology 22(2): 252-259. [CrossRef]
  • Markou, G., Nerantzis, E., 2013. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology Advances 31(8): 1532-1542. [CrossRef]
  • Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O. N., Das, P., Mandal, Halder, G.N., 2017. Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech 7(2): 99. [CrossRef]
  • Moriyama, T., Toyoshima, M., Saito, M., Wada, H., Sato, N., 2018. Revisiting the algal “chloroplast lipid droplet”: The absence of an entity that is unlikely to exist. Plant Physiology 176(2): 1519-1530. [CrossRef]
  • Moser, B.R., 2014. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends. Fuel 115: 500-506. [CrossRef]
  • Mubarak, M., Shaija, A., Suchithra, T.V., 2015. A review on the extraction of lipid from microalgae for biodiesel production. Algal Research 7: 117-123. [CrossRef]
  • Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., de Carvalho, G.C., Nascimento, M.A., de Souza, C.O., Liao, W., 2014. Microalgae versus land crops as feedstock for biodiesel: productivity, quality, and standard compliance. Bioenergy Research 7(3): 1002-1013. [CrossRef]
  • Pandey, L.K., Kumar, D., Yadav, A., Rai, J., Gaur, J.P., 2014. Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecological Indicators 36: 272-279. [CrossRef]
  • Peltomaa, E., Hällfors, H., Taipale, S.J., 2019. Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs. Marine Drugs 17(4): 233. [CrossRef]
  • Pienkos, P.T., Darzins, A.L., 2009. The promise and challenges of microalgal‐derived biofuels. Biofuels, Bioproducts and Biorefining: Innovation for a Sustainable Economy 3(4): 431-440. [CrossRef]
  • Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, Á. S., Coutinho, J.A., 2011. Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. Journal of Chemical & Engineering Data 56(5): 2175-2180. [CrossRef]
  • Ravikumar, K., Dakshayini, J., Girisha, S.T., 2012. Biodiesel production from oleaginous fungi. International Journal of Life Sciences 6(1): 43-49. [CrossRef]
  • Rawat, I., Kumar, R.R., Mutanda, T., Bux, F., 2013. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy 103: 444-467. [CrossRef]
  • Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S., de Lasa, H., 2013. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-a review. Renewable and Sustainable Energy Reviews 27: 622-653. [CrossRef]
  • Sakuragi, K., Li, P., Aoki, N., Otaka, M., Makino, H., 2016. Oil recovery from wet Euglena gracilis by shaking with liquefied dimethyl ether. Fuel Processing Technology 148: 184-187. [CrossRef]
  • Saluja, R.K., Kumar, V., Sham, R., 2016. Stability of biodiesel-A review. Renewable and Sustainable Energy Reviews 62: 866-881. [CrossRef]
  • Sharma, K.K., Schuhmann, H., Schenk, P.M., 2012. High lipid induction in microalgae for biodiesel production. Energies 5(5): 1532-1553. [CrossRef]
  • Singh, A., Nigam, P.S., Murphy, J.D., 2011. Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology 102(1): 26-34. [CrossRef]
  • Sivaramakrishnan, K., Ravikumar, P., 2012. Determination of cetane number of biodiesel and its influence on physical properties. ARPN Journal of Engineering and Applied Sciences 7(2): 205-211.
  • Talebi, A. F., Tabatabaei, M., Chisti, Y., 2014. BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Research Journal 1(2): 55-57. [CrossRef]
  • Tesfa, B., Mishra, R., GU, F., Powles, N., 2010. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renewable Energy 35(12): 2752-2760. [CrossRef]
  • Töpel, M., Rosenblad, M.A., Lind, U., Gross, S., Karlsten, S., Persson, J., Backman, Blomberg, A. De novo genome sequencing of Skeletonema marinoi and Surirella brebissonii. Poster. https://doi.org/10.6084/m9.figshare.729273.v1
  • Trabert, Z., 2017. Diatoms from ship ballast sediments (with consideration of a few additional species of special interest). Acta Botanica Hungarica, 59(3-4), 462-464.
  • Vanthoor-Koopmans, M., Wijffels, R.H., Barbosa, M.J., Eppink, M.H., 2013. Biorefinery of microalgae for food and fuel. Bioresource Technology 135: 142-149. [CrossRef]
  • Waghmare, A.G., Salve, M.K., LeBlanc, J.G., Arya, S.S., 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources and Bioprocessing 3(1): 16. [CrossRef]
  • Wang, X., Fosse, H.K., Li, K., Chauton, M.S., Vadstein, O., Reitan, K.I., 2019. Influence of nitrogen limitation on lipid accumulation and EPA and DHA content in four marine microalgae for possible use in aquafeed. Frontiers Marine Science 6: 95. [CrossRef]
  • Wijffels, R.H., Barbosa, M.J., 2010. An outlook on microalgal biofuels. Science 329(5993): 796-799. [CrossRef]
  • Wu, H., Cockshutt, A.M., McCarthy, A., Campbell, D.A., 2011. Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms. Plant Physiology 156(4): 2184-2195. [CrossRef]
  • Xin, L., Hong-Ying, H., Ke, G., Ying-Xue, S., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101(14): 5494-5500. [CrossRef]
  • Yi, Z., Xu, M., Di, X., Brynjolfsson, S., Fu, W., 2017. Exploring valuable lipids in diatoms. Frontiers in Marine Science 4: 17. [CrossRef] Etesami et al. Research on Surirella brebissonii as a biofuel alternative Forestist 2020, 70(1): 19-27
APA Etesami E, noroozi m, Jorjani S (2020). Research on Surirella brebissonii as a biofuel alternative. , 19 - 27. 10.5152/forestist.2020.19026
Chicago Etesami Ehsan,noroozi mostafa,Jorjani Sarah Research on Surirella brebissonii as a biofuel alternative. (2020): 19 - 27. 10.5152/forestist.2020.19026
MLA Etesami Ehsan,noroozi mostafa,Jorjani Sarah Research on Surirella brebissonii as a biofuel alternative. , 2020, ss.19 - 27. 10.5152/forestist.2020.19026
AMA Etesami E,noroozi m,Jorjani S Research on Surirella brebissonii as a biofuel alternative. . 2020; 19 - 27. 10.5152/forestist.2020.19026
Vancouver Etesami E,noroozi m,Jorjani S Research on Surirella brebissonii as a biofuel alternative. . 2020; 19 - 27. 10.5152/forestist.2020.19026
IEEE Etesami E,noroozi m,Jorjani S "Research on Surirella brebissonii as a biofuel alternative." , ss.19 - 27, 2020. 10.5152/forestist.2020.19026
ISNAD Etesami, Ehsan vd. "Research on Surirella brebissonii as a biofuel alternative". (2020), 19-27. https://doi.org/10.5152/forestist.2020.19026
APA Etesami E, noroozi m, Jorjani S (2020). Research on Surirella brebissonii as a biofuel alternative. FORESTIST, 70(1), 19 - 27. 10.5152/forestist.2020.19026
Chicago Etesami Ehsan,noroozi mostafa,Jorjani Sarah Research on Surirella brebissonii as a biofuel alternative. FORESTIST 70, no.1 (2020): 19 - 27. 10.5152/forestist.2020.19026
MLA Etesami Ehsan,noroozi mostafa,Jorjani Sarah Research on Surirella brebissonii as a biofuel alternative. FORESTIST, vol.70, no.1, 2020, ss.19 - 27. 10.5152/forestist.2020.19026
AMA Etesami E,noroozi m,Jorjani S Research on Surirella brebissonii as a biofuel alternative. FORESTIST. 2020; 70(1): 19 - 27. 10.5152/forestist.2020.19026
Vancouver Etesami E,noroozi m,Jorjani S Research on Surirella brebissonii as a biofuel alternative. FORESTIST. 2020; 70(1): 19 - 27. 10.5152/forestist.2020.19026
IEEE Etesami E,noroozi m,Jorjani S "Research on Surirella brebissonii as a biofuel alternative." FORESTIST, 70, ss.19 - 27, 2020. 10.5152/forestist.2020.19026
ISNAD Etesami, Ehsan vd. "Research on Surirella brebissonii as a biofuel alternative". FORESTIST 70/1 (2020), 19-27. https://doi.org/10.5152/forestist.2020.19026