Yıl: 2020 Cilt: 35 Sayı: 3 Sayfa Aralığı: 298 - 305 Metin Dili: İngilizce DOI: 10.5505/tjo.2020.2264 İndeks Tarihi: 26-11-2020

A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment

Öz:
OBJECTIVEIn Patient Quality Assurance measurements for Intensity Modulated Radiation Therapy, this studyaimed to investigate the dosimetric differences between the calculated and measured values when thestandard dosimetric equipment contains the different density materials.METHODSIn this study, a setup that can be used for both absolute dose and planar dose distribution is consideredaimed to investigate the effects of the selected grid size value in the treatment planning system on theMonitor Unit, 2D array gamma evaluation and absorbed dose measurements. Also, the effects of usingdifferent “distance to agreement” values and the effects of using cylindrical/inhomogeneous phantominstead of square/homogeneous on 2D array gamma evaluation and absorbed dose measurements wereinvestigated.RESULTSThe considerable difference between the calculated dose and measured dose for grid size 0.1 cm wasfound to be 2.96% for the square/homogeneous phantom and 5.75% for the cylindrical/inhomogeneousphantom. According to the 3%/2 mm criterion, Setup1 allowed treatment with 98.76%, whereas thisvalue was below our acceptance limit with 88.39% for Setup 2.CONCLUSIONIn addition to the standard IMRT patient QA procedure, we are of the opinion that the use of clinicallydifferent dosimetric equipment provides an idea of the control of different grid size values of TPS calculationalgorithms.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Portelance L, Chao KS, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 2001;51(1):261–6.
  • 2. Bayouth JE, Wendt D, Morrill SM. MLC quality assurance techniques for IMRT applications. Med Phys 2003;30(5):743–50.
  • 3. Chui CS, Spirou S, LoSasso T. Testing of dynamic multileaf collimation. Med Phys 1996;23(5):635–41.
  • 4. LoSasso T, Chui CS, Ling CC. Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode. Med Phys 2001;28(11):2209–19.
  • 5. Gopi S, Ganesan S, Aruna P, Bouchaib R, Supe SS. Influence of photon beam energy on IMRT plan quality for radiotherapy of prostate cancer. Rep Pract Oncol Radiother 2009;14(1):18–31.
  • 6. Bhardwaj AK, Sharma SC, Rana B, Shukla A. Study of 2D ion chamber array for angular response and QA of dynamic MLC and pretreatment IMRT plans. Rep Pract Oncol Radiother 2009;14(3):89–94.
  • 7. Winiecki J, Morgas T, Majewska K, Drzewiecka B. The gamma evaluation method as a routine QA procedure of IMRT. Rep Pract Oncol Radiother 2009;14(5):162–8.
  • 8. Slosarek K, Szlag M, Bekman B, Grzadziel A. EPID in vivo dosimetry in RapidArc technique. Rep Pract Oncol Radiother 2010;15(1):8–14.
  • 9. Stock M, Kroupa B, Georg D. Interpretation and evaluation of the gamma index and the gamma index angle for the verification of IMRT hybrid plans. Phys Med Biol 2005;50(3):399–411.
  • 10. Wiezorek T, Banz N, Schwedas M, Scheithauer M, Salz H, Georg D, et al. Dosimetric quality assurance for intensity- modulated radiotherapy feasibility study for a filmless approach. Strahlenther Onkol 2005;181(7):468–74.
  • 11. Alber M, Broggi S, Wagter CD, Eichwurzel I, Engstrom P, Fiorino C, et al. Guidelines for the verification of IMRT. Brussels, Belgium: ESTRO; 2008.
  • 12. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 2009;36(11):5359–73.
  • 13. Pathak P, Mishra PK, Birbiya N. Dosimetric Study on Variations of Gamma Index (GI) in Pre-Treatment Verification Procedure in Intensity Modulated Radiotherapy (IMRT) Plans with Varying Grid Sizes Using 2D Array Detectors. J Cancer Sci Ther 2015;7:161–6.
  • 14. Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. Dosimetry tools and techniques for IMRT. Med Phys 2011;38(3):1313–38.
  • 15. Van Esch A, Bohsung J, Sorvari P, Tenhunen M, Paiusco M, Iori M, et al. Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments. Radiother Oncol. 2002;65(1):53–70.
  • 16. Jursinic PA, Nelms BE. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery. Med Phys 2003;30(5):870–9.
  • 17. Niemierko A, Goitein M. The influence of the size of the grid used for dose calculation on the accuracy of dose estimation. Med Phys 1989;16(2):239–47.
  • 18. Feygelman V, Zhang G, Stevens C. Initial dosimetric evaluation of SmartArc - a novel VMAT treatment planning module implemented in a multi-vendor delivery chain. J Appl Clin Med Phys 2010;11(1):3169.
  • 19. Dempsey JF, Romeijn HE, Li JG, Low DA, Palta JR. A fourier analysis of the dose grid resolution required for accurate IMRT fluence map optimization. Med Phys 2005;32(2):380–8.
  • 20. Chung H, Jin H, Palta J, Suh TS, Kim S. Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol 2006;51(19):4841–56.
  • 21. Park JY, Kim S, Park HJ, Lee JW, Kim YS, Suh TS. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arctechnique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy. Radiat Oncol 2014;9:5.
  • 22. De Martin E, Fiorino C, Broggi S, Longobardi B, Pierelli A, Perna L, et al. Agreement criteria between expected and measured field fluences in IMRT of head and neck cancer: the importance and use of the gamma histograms statistical analysis. Radiother Oncol 2007;85(3):399–406.
  • 23. Pulliam KB, Followill D, Court L, Dong L, Gillin M, Prado K, et al. A six-year review of more than 13,000 patient-specific IMRT QA results from 13 different treatment sites. J Appl Clin Med Phys 2014;15(5):4935.
  • 24. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 2000;47(2):291–8.
  • 25. Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys 2006;64(2):333–42.
  • 26. Galvin JM, Ezzell G, Eisbrauch A, Yu C, Butler B, Xiao Y, et al. Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys 2004;58(5):1616–34.
  • 27. Lee MT, Purdie TG, Eccles CL, Sharpe MB, Dawson LA. Comparison of simple and complex liver intensity modulated radiotherapy. Radiat Oncol 2010;5:115.
  • 28. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003;56(1):83–8.
  • 29. Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2005;62(4):1195–203.
  • 30. Videtic GM, Hu C, Singh AK, Chang JY, Parker W, Olivier KR, et al. A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer: NRG Oncology RTOG 0915 (NCCTG N0927). Int J Radiat Oncol Biol Phys 2015;93(4):757–64.
  • 31. Carrasco P, Jornet N, Duch MA, Weber L, Ginjaume M, Eudaldo T, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys 2004;31(10):2899–911.
  • 32. Manjunatha HC. A study of photon interaction parameters in lung tissue substitutes. J Med Phys 2014;39(2):112–5.
APA Inal A, SARPÜN İ, Ünal R (2020). A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. , 298 - 305. 10.5505/tjo.2020.2264
Chicago Inal Aysun,SARPÜN İsmail Hakkı,Ünal Rıdvan A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. (2020): 298 - 305. 10.5505/tjo.2020.2264
MLA Inal Aysun,SARPÜN İsmail Hakkı,Ünal Rıdvan A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. , 2020, ss.298 - 305. 10.5505/tjo.2020.2264
AMA Inal A,SARPÜN İ,Ünal R A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. . 2020; 298 - 305. 10.5505/tjo.2020.2264
Vancouver Inal A,SARPÜN İ,Ünal R A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. . 2020; 298 - 305. 10.5505/tjo.2020.2264
IEEE Inal A,SARPÜN İ,Ünal R "A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment." , ss.298 - 305, 2020. 10.5505/tjo.2020.2264
ISNAD Inal, Aysun vd. "A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment". (2020), 298-305. https://doi.org/10.5505/tjo.2020.2264
APA Inal A, SARPÜN İ, Ünal R (2020). A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. Türk Onkoloji Dergisi, 35(3), 298 - 305. 10.5505/tjo.2020.2264
Chicago Inal Aysun,SARPÜN İsmail Hakkı,Ünal Rıdvan A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. Türk Onkoloji Dergisi 35, no.3 (2020): 298 - 305. 10.5505/tjo.2020.2264
MLA Inal Aysun,SARPÜN İsmail Hakkı,Ünal Rıdvan A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. Türk Onkoloji Dergisi, vol.35, no.3, 2020, ss.298 - 305. 10.5505/tjo.2020.2264
AMA Inal A,SARPÜN İ,Ünal R A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. Türk Onkoloji Dergisi. 2020; 35(3): 298 - 305. 10.5505/tjo.2020.2264
Vancouver Inal A,SARPÜN İ,Ünal R A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment. Türk Onkoloji Dergisi. 2020; 35(3): 298 - 305. 10.5505/tjo.2020.2264
IEEE Inal A,SARPÜN İ,Ünal R "A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment." Türk Onkoloji Dergisi, 35, ss.298 - 305, 2020. 10.5505/tjo.2020.2264
ISNAD Inal, Aysun vd. "A Different Approach to Intensity Modulated Radiation Therapy Patient QA Measurements about Dosimetric Equipment". Türk Onkoloji Dergisi 35/3 (2020), 298-305. https://doi.org/10.5505/tjo.2020.2264