Yıl: 2020 Cilt: 45 Sayı: 1 Sayfa Aralığı: 182 - 191 Metin Dili: Türkçe DOI: 10.15237/gida.GD19115 İndeks Tarihi: 08-02-2021

DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ

Öz:
Mayalar, bazı bakteri ve maya türleri üzerinde inhibitör etki göstermektedir. Bu mayaların, gıdalarda bozulmaetmeni ve patojen mikroorganizmaların biyokontrolünde kullanılma olanakları araştırılmaktadır. Bu amaçla,mayaların elde edilebilmesi için çok sayıda doğal materyal ve fermente gıdadan izolasyon yapılmıştır. Öntaramalar sonucunda farklı 110 maya suşu izole edilerek saflaştırılmıştır. Elde edilen izolatların Escherichia coli,Micrococcus luteus ve Candida albicans üzerindeki inhibitör etkileri test edilmiştir. İzolatlardan 8 tanesi M. luteus,2 tanesi E. coli ve 4 tanesi C. albicans üzerinde inhibitör etki göstermiştir. Bunlar üzerinde inhibitör etkigösteren suşlara Staphylococcus aureus, Listeria monocytogenes, Saccharomyces cerevisiae, Pseudomonas aeruginosa, E. coliO157 ve O157:H7, Bacillus subtilis, Salmonella enterica subsp. Typhimurium üzerinde de inhibisyon testleriuygulanmıştır. İnhibitör etkinin farklı patojenler üzerinde farklı derecelerde olduğu gözlenmiştir. Patojenlerekarşı en fazla katil özellik gösteren izolatlar tanımlanmış ve bu izolatların Metschnikowia pulcherrima,Metschnikowia reukaufii ve Saccharomyces cerevisiae oldukları belirlenmiştir.
Anahtar Kelime:

INHIBITORY EFFECTS OF NATURAL YEASTS ON COMMON PATHOGENS

Öz:
Yeasts have an inhibitory effects on certain bacterial and yeast species. The possible use of these yeasts on biocontrol of food-spoilage and pathogenic microorganisms was investigated. In order to obtain yeast isolates, various natural materials and fermented foods were used. As a result of preliminary screening, 110 different yeast strains were isolated. The inhibitory effects of the isolates on Escherichia coli, Micrococcus luteus and Candida albicans were tested. Eight of the isolates on M. luteus, 2 of them on E. coli and 4 of the isolates on C. albicans showed inhibitory effect. Strains which exhibit inhibitory effects on these 3 indicator microorganisms were also tested against Staphylococcus aureus, Listeria monocytogenes, Saccharomyces cerevisiae, Pseudomonas aeruginosa, Escherichia coli O157 and O157: H7, Bacillus subtilis, Salmonella enterica subsp. Typhimurium. Isolates which have greatest killer feature and these were determined as Metschnikowia pulcherrima, Metschnikowia reukaufii and Saccharomyces cerevisiae.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Acuña-Fontecilla, A., Silva-Moreno, E., Ganga, M.A. (2017). Evaluation of antimicrobial activity from native wine yeast against food industry pathogenic microorganisms. CyTA-J Food, 15(3), 457-465.
  • Altuntaş, E.G., Özçelik, F. (2007). Killer özellikli mayaların etki mekanizmaları ve endüstride yol açtıkları sorunlar. GIDA, 32 (4), 205-212.
  • Arendrup, M.C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W. (2014). The subcommittee on antifungal susceptibility testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST).
  • Aydın, M. (2004). Candida cinsi mantarlar (Candida albicans). Ed. Cengiz, Mısırlıgil, Aydın. Tıp ve Diş Hekimliğinde Genel ve Özel Mikrobiyoloji. 133:1109-1118. Güneş yayınevi, Ankara.
  • Baeza, M.E., Sanhueza, M.A., Cifuentes, V.H. (2008). Occurrence of killer yeast strains in industrial and clinical yeast isolates. Biol Res, 41: 173-182.
  • Bevan, E.A., Makower, M. (1963). The physiological basis of the killer character in yeast. Proceedings of the 11th International Congress of Genetics. September 1963, The Hague, The Netherlands, 1: 202-203.
  • Carreiro, S.C., Pagnocca, F.C., Bacci, M., Bueno, O.C., Hebling, M.J.A., Middelhoven, W.F. (2002). Occurrence of killer yeasts in leaf-cutting ant nests. Folia Microbiol, 47(3): 259-262.
  • Chen, W.B., Han, Y.F., Jong, S.C., Chang, S.C. (2000). Isolation purification and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol, 66: 1029-1035.
  • Chen, Y., Aorigele, C., Wang, C., Simujide, H., Yang, S. (2015). Screening and extracting mycocin secreted by yeast isolated from Koumiss and their antibacterial effect. J Food Nutr Res, 3(1): 52-56.
  • Çerikcioğlu, N. (2003). Maya Öldürücü Toksinin Tıbbi Önemi. Mikrobiyal Bült, 37: 215-221.
  • Dabhole, M.P., Joishy, K.N. (2005). Production and effect of killer toxin by Saccharomyces cerevisiae and Pichia kluyveri on sensitive yeasts and fungal pathogens. Indian J Biotechnol, 4: 290-292.
  • Farris, G.A., Mannazzu, I., Budroni, M. (1991). Identification of killer factor in the yeast genus Metschnikowia. Biotechnol Lett, 13, 297-298.
  • Fernández de Ullivarri, M., Mendoza, L.M., Raya, R.R. (2018). Characterization of the killer toxin KTCf20 from Wickerhamomyces anomalus, a potential biocontrol agent against wine spoilage yeasts. Biol Control, 121: 223-228.
  • Golubev, W. I. (2006). Antagonistic interactions among yeasts, in bio-diversity and ecophysiology of yeasts, eds. G. Péter and C. Rosa (Berlin: Springer),197-219.
  • Gulbiniene, G., Kondratiene, L., Jokantaite, T., Serviene, E., Melvydas, V., Petkuniene, G. (2004). Occurence of killer yeast strains in fruit and berry wine yeast populations. Food Technol Biotechnol, 42(3): 159-163.
  • Halkman, K. (2011). Almanya’daki EHEC salgını ve düşündürdükleri. Köşe Yazısı, 01 Temmuz 2011, Cum. https://www.labmedya.com/ ğggg,yşN(almanyadaki-ehec-salgini-vedusundurdukleri, Erişim tarihi: (17.05.2019).
  • Hayduck, F., (1909).Uber einen Hefengiftstoff in Hefe. Wochenschr Brau 26: 677-679. (In German) Hodgson, V.J., Button, D., Walker, G.M. (1995).
  • Anticandida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiol, 141: 2003- 2012.
  • Hou, F., Li, J., Pan, P., Xua, J., Liua, L., Liua, W., Songa, B, Li, N., Wana, J., Gaoa, H. (2011). Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis. Int J Antimicrob Agents, 38: 510-515.
  • Izgu, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3- glucanase. Biosci Biotechnol Biochem, 68: 685-693.
  • Janisiewicz, W.J., Tworkoski, T.J., Kurtzman, C.P. (2001). Biocontrol potential of Metchnikowia pulcherrima strains against blue mold of apple, Phytopathol, 91: 1098-1108.
  • Klassen, R., Meinhardt, F. (2005). Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol. 7: 393-401.
  • Kuleaşan, H., Çakmakçı, M.L. (2003). Bakteriyosinlerin özellikleri, Gıda Mikrobiyolojisinde Kullanım Alanları ve İleri Dönemlerdeki Kullanım Potansiyelleri. GIDA, 28: 123-129.
  • Lim, S.L., Tay, S.T. (2011). Diversity and killer activity of yeasts in malaysian fermented food samples. Trop Biomed, 28(2): 438-443.
  • Liu, G.L., Chi, Z., Wang, G.Y., Wang, Z.P., Li, Y., Chi, Z.M. (2013). Yeast killer toxins, molecular mechanisms of their action and their applications. Crit Rev Biotechnol, 35(2): 222-234.
  • Lopes, C.A., Sangorrin, M.P. (2010). Optimization of killer assays for yeast selection protocols. Rev Argent Microbiol, 42: 298-306.
  • Magliani, W., Conti, S., Gerloni, M., Bertolotti, D., Polonelli, L. (1997). Yeast killer systems. Clin Microbiol Rev, 10: 369-400.
  • Marquina, D., Santos, A., Peinado, J.M. (2002). Biology of killer yeast. Int Microbiol, 5: 65-71.
  • McCullough, M.J., Ross, B.C., Reade, P.C. (1996). Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int J Oral Maxillofac Surg, 25(2): 136-144.
  • McFarland J. (1907). Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Assoc, 14: 1176-1178.
  • Ochigava, I., Collier, P.J., Walker, G.M., Hakenbeck R. (2011). Willipsis saturnus yeast killer toxin does not kill Streptococcus pneumoniae. Antonie Leeuwenhoek, 99: 559-566.
  • O’Leary, E.C. (1987). A study of killer yeast activity against the opportunistic pathogen Candida albicans. Thesis Presented for the Degree of Master of Science. School of Biological Sciences National Institute for Higher Education, Dublin, Ireland.
  • Oro, L., Ciani, M., Comitini, F. (2014). Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol, 116: 1209-1217.
  • Polonelli, L., Archibusacci, C., Sestito, M., Morace, G. (1983). Killer system: a simple method for differentiating Candida albicans strains. J Clin Microbiol, 17(5): 774-780.
  • Polonelli, L., Morace, G. (1986). Reevaluation of the yeast killer phenomenon. J Clin Microbiol, 24(5): 866-869.
  • Roostita, L.B., Fleet, G.H., Wendry, S.P., Apon, Z.M., Gemilang, L.U. (2011). Determination of yeasts antimicrobial activity in milk and meat products. Adv J Food Sci Technol, 3(6): 442-445.
  • Russell, I. (1986). Killer yeast identification. J Am Soc Brew Chem, 44(3): 123-125.
  • Schmitt, M.J., Breinig, F. (2002). The viral killer system in yeast: from molecular biology to application. FEMS Microbiol, 26: 257–276.
  • Seifert, H., Kaltheuner, M., Perdreau-Remıngton, F. (1995). Micrococcus luteus endocarditis: case report and review of the literatüre. Zentralbl Bakteriol, 282: 431-5.
  • Suzuki, C., Ando, Y., Machida, S. (2001). Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast, 18(16): 1471-1478.
  • Vadkertiova, R., Slavikova, E. (2007). Killer activity of yeasts isolated from natural environments against some medically important Candida species. Pol J Microbiol, 56 (1): 39-43.
  • Young, T. W., Yagiu, M. (1978). A comparison of the killer character in different yeasts and its classification. Antonie Leeuwenhoek, 44(1): 59-77.
  • Wieser, M., Denner, E.B., Kämpfer, P., Schumann, P., Tindall, B., Steiner, U., Vybiral, D., Lubitz, W., Maszenan, A.M., Patel, B.K., Seviour, R.J., Radax, C., Busse, H.J. (2002). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Mikrobiol, 52(2): 629-637.
APA BEDİR T, KULEAŞAN H (2020). DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. , 182 - 191. 10.15237/gida.GD19115
Chicago BEDİR Tuba,KULEAŞAN HAKAN DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. (2020): 182 - 191. 10.15237/gida.GD19115
MLA BEDİR Tuba,KULEAŞAN HAKAN DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. , 2020, ss.182 - 191. 10.15237/gida.GD19115
AMA BEDİR T,KULEAŞAN H DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. . 2020; 182 - 191. 10.15237/gida.GD19115
Vancouver BEDİR T,KULEAŞAN H DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. . 2020; 182 - 191. 10.15237/gida.GD19115
IEEE BEDİR T,KULEAŞAN H "DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ." , ss.182 - 191, 2020. 10.15237/gida.GD19115
ISNAD BEDİR, Tuba - KULEAŞAN, HAKAN. "DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ". (2020), 182-191. https://doi.org/10.15237/gida.GD19115
APA BEDİR T, KULEAŞAN H (2020). DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA, 45(1), 182 - 191. 10.15237/gida.GD19115
Chicago BEDİR Tuba,KULEAŞAN HAKAN DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA 45, no.1 (2020): 182 - 191. 10.15237/gida.GD19115
MLA BEDİR Tuba,KULEAŞAN HAKAN DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA, vol.45, no.1, 2020, ss.182 - 191. 10.15237/gida.GD19115
AMA BEDİR T,KULEAŞAN H DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA. 2020; 45(1): 182 - 191. 10.15237/gida.GD19115
Vancouver BEDİR T,KULEAŞAN H DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA. 2020; 45(1): 182 - 191. 10.15237/gida.GD19115
IEEE BEDİR T,KULEAŞAN H "DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ." GIDA, 45, ss.182 - 191, 2020. 10.15237/gida.GD19115
ISNAD BEDİR, Tuba - KULEAŞAN, HAKAN. "DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ". GIDA 45/1 (2020), 182-191. https://doi.org/10.15237/gida.GD19115