Mustafa CİFTCİ
(Bursa Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Kimya Bölümü, 16310, Bursa Türkiye)
Yıl: 2019Cilt: 6Sayı: 3ISSN: 2149-0120 / 2149-0120Sayfa Aralığı: 365 - 372İngilizce

32 0
Synthesis of Polysulfone Based Amphiphilic Graft Copolymers by a ‘Grafting to’ Approach
Synthesis of amphiphilic polysulfone graft copolymers by ‘‘Click’’ chemistry is described. First, a commercial PSU was chloromethylated to give chloro-funtional PSU (PSU-Cl). Subsequently, chloride groups were converted into azide moieties by nucleophilic substitution. Hydrophilic poly(N,Ndimethylacrylamide) (PDMA) side chains were then attached via a “grafting to” approach by using coppercatalyzed azide–alkyne cycloaddition (CuAAC). Precursor polymer and the final amphiphilic copolymers were characterized by proton nuclear magnetic resonance ( 1H NMR), fourier-transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and contact angle measurements.
DergiAraştırma MakalesiErişime Açık
  • 1. Barth C, Goncalves MC, Pires ATN, Roeder J, Wolf BA. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science. 2000;169(2):287-99.
  • 2. Watanabe S, Kobayashi A, Kakimoto M-A, Imai Y. Synthesis and characterization of new aromatic polyesters and polyethers derived from 1,2-bis(4- hydroxyphenyl)-1,2-diphenylethylene. 1994;32(5):909-15.
  • 3. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews. 2004;104(10):4587-612.
  • 4. Noshay A, Robeson LM. Sulfonated Polysulfone. Journal of Applied Polymer Science. 1976;20(7):1885-903.
  • 5. Park JY, Acar MH, Akthakul A, Kuhlman W, Mayes AM. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials. 2006;27(6):856-65.
  • 6. Yoon K, Hsiao BS, Chu B. Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes. Polymer. 2009;50(13):2893-9.
  • 7. Higuchi A, Shirano K, Harashima M, Yoon BO, Hara M, Hattori M, et al. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials. 2002;23(13):2659-66.
  • 8. Dizman C, Tasdelen MA, Yagci Y. Recent advances in the preparation of functionalized polysulfones. Polymer International. 2013;62(7):991-1007.
  • 9. Dizman C, Demirkol DO, Ates S, Torun L, Sakarya S, Timur S, et al. Photochemically prepared polysulfone/poly(ethylene glycol) amphiphilic networks and their biomolecule adsorption properties. Colloids and Surfaces BBiointerfaces. 2011;88(1):265-70.
  • 10. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angewandte ChemieInternational Edition. 2001;40(11):2004-21.
  • 11. Binder WH, Sachsenhofer R. 'Click' chemistry in polymer and materials science. Macromol Rapid Commun. 2007;28(1):15-54.
  • 12. Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Click chemistry reactions in medicinal chemistry: Applications of the 1,3- dipolar cycloaddition between azides and alkynes. Medicinal Research Reviews. 2008;28(2):278- 308.
  • 13. Tasdelen MA, Yagci Y. Light-Induced Click Reactions. Angewandte Chemie-International Edition. 2013;52(23):5930-8.
  • 14. Ciftci M, Kahveci MU, Yagci Y, Allonas X, Ley C, Tar H. A simple route to synthesis of branched and cross-linked polymers with clickable moieties by photopolymerization. Chemical Communications. 2012;48(82):10252-4.
  • 15. Murtezi E, Ciftci M, Yagci Y. Synthesis of clickable hydrogels and linear polymers by type II photoinitiation. Polymer International. 2015;64(5):588-94.
  • 16. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13(26):6964-71.
  • 17. Nishikawa T, Nishida J, Ookura R, Nishimura SI, Wada S, Karino T, et al. Honeycombpatterned thin films of amphiphilic polymers as cell culture substrates. Materials Science & Engineering C-Biomimetic and Supramolecular Systems. 1999;8-9:495-500.
  • 18. Acik G, Altinkok C. Polypropylene microfibers via solution electrospinning under ambient conditions. 2019;136(45):48199.
  • 19. Geyik C, Ciftci M, Demir B, Guler B, Ozkaya AB, Gumus ZP, et al. Controlled release of anticancer drug Paclitaxel using nano-structured amphiphilic star-hyperbranched block copolymers. Polymer Chemistry. 2015;6(30):5470-7.
  • 20. Seleci M, Seleci DA, Ciftci M, Demirkol DO, Stahl F, Timur S, et al. Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery. Langmuir. 2015;31(15):4542-51.
  • 21. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36(15):5732-41.
  • 22. Trossarelli L, Meirone M. Solution properties of poly(N,N‐dimethylacrylamide). Journal of Polymer Science. 1962;57(165):445-52.
  • 23. Lu D, Jia Z, Monteiro MJ. Synthesis of alkyne functional cyclic polymers by one-pot thiol–ene cyclization. Polymer Chemistry. 2013;4(6):2080-9.
  • 24. Toiserkani H, Yilmaz G, Yagci Y, Torun L. Functionalization of Polysulfones by Click Chemistry. Macromolecular Chemistry and Physics. 2010;211(22):2389-95.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.