Yıl: 2021 Cilt: 8 Sayı: 1 Sayfa Aralığı: 249 - 262 Metin Dili: İngilizce DOI: 10.18596/jotcsa. 813787 İndeks Tarihi: 28-02-2021

Characterization of the Alphabet Reform Painting

Öz:
The Alphabet Reform painting which shows Ataturk teaching the new alphabet is important forthe history of the Republic of Turkey. This painting was made by Nazmi Ziya GÜRAN in 1933. The painting isnow maintained by the Ministry of Interior. In this work, the Alphabet Reform painting was analyzed forcharacterization and restoration purposes. The fabric of the canvas, pigments (organic-inorganic) and thebinder of paint were characterized by Fourier Transform infrared spectroscopy-attenuated total reflectance(ATR-FTIR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) and highperformance liquid chromatography-coupled with diode array detection (HPLC-DAD) analysis methods. TheCIEL*a*b* color parameters of the paint were determined by color measurement spectrophotometer.According to the results, the canvas was found to be of fibers of vegetable origin and the binders weredetermined to be linseed oil and dammar varnish. Red alizarin (madder lake organic pigment) and dark blueultramarine pigments were detected as the organic pigments while CdS (yellow), Pb red (flesh color), PbCO3(white), ZnO (white), BaSO4 (white), FeO (brown) and Cr2O3 (green color) were detected as the inorganicones.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Lomax SQ. Phthalocyanine and quinacridone pigments: their history, properties and use. Studies in Conservation. 2005 ; 50:sup-1. 19- 29. doi: https://doi.org/10.1179/sic.2005.50.Supplement -1.19
  • 2. Weerd JV, Loon AV, Boon JJ. FTIR studies of the effects of pigments on the aging of oil. Studies in conservation. 2005; 50:1, 3-22. doi: https://doi.org/10.1179/sic.2005.50.1.3.
  • 3. Feller Robert L, editor. Artists’ Pigments A handbook of their history and characteristics Volume 1. London: National Gallery of Art, Washington Archetype Publications; 2012.
  • 4. Roy A, editor. Artists’ Pigments A handbook of their history and characteristics Volume 2. London: National Gallery of Art, Washington Archetype Publications; 2012.
  • 5. Fıtzhugh EW, editor. Artists’ Pigments A handbook of their history and characteristics Volume 3. London: National Gallery of Art, Washington Archetype Publications; 2012.
  • 6. Kasiri MB, Bbaylou AN, Zandkarimi H. Photooxidative stability of a series of red acrylic paints. Progress in color, colorants and coatings. 2014; 177-85. doi: https://doi.org/https://dx.doi.org/10.30509/pccc. 2013.75834.
  • 7. Zelinska J, Kopecka I, Svobodova E, Milovska S, Hurai V. Stratigraphic EM-EDS, XRF, Raman and FT-IR analysis of multilayer paintings from the Main Altar of the St. James Church in Levoca (Slovakia). Journal of Cultural Heritage. 2018; 33:90-9. doi: https://doi.org/10.1016/j.culher.2018.03.006.
  • 8. Nasa J, Nodari L, Nardelli F, Sabatini F, Degano I, Modugna F, et al. Chemistry of modern paint media: The strained and collapsed painting by Alexis Harding. Microchemical Journal. 2020 June ; 155:104659. doi: https://doi.org/10.1016/j.microc.2020.104659.
  • 9. Claro A, Melo MJ, Melo JSS, Berg KJ, Burnstock A, Montague M, et al. Identification of red colorants in van Gogh paintings and ancient Andean textiles by microspectrofluorimetry. Journal of Cultural Heritage. 2010; 11(1) :27-34. doi: https://doi.org/ 1 0 .1016/j.culher.2009.03.006.
  • 10. Benetti F, Perra G, Damiani D, Atrei A, Marchettini N. ToF-SIMS characterization of proteinaceous binders in the wall painting “Madonna and Child enthroned with Saints” by Ambrogio Lorenzetti in the St. Augustine Church (Siena, Italy). International Journal of Mass Spectrometry. 2015 Dec;392:111–7. doi: https://doi.org/10.1016/j.ijms.2015.09.018.
  • 11. Kaszowska Z, Malek K, Panczyk M, Mikolajska A. A joint application of ATR-FTIR and SEM imaging with high spatial resolution: Identification and distribution of painting materials and their degradation products in paint cross sections. Vibrational Spectroscopy. 2013; 65: 1-11. doi: https://doi.org/10.1016/j.vibspec.2012.11.018.
  • 12. Melo HP, Cruz AJ, Valadas S, Cardoso AM, Candeias A. The use of glass particles and its consequences in late 16th century oil painting: A Portuguese case based on the analytical results and the technical treatises. Journal of Cultural Heritage. 2020 May;43:261–70. Doi: https://doi.org/10.1016/j.culher.2019.11.001.
  • 13. Iwanicka M, Moretti P, Oudheusden SV, Sylwestrzak M, Cartechini L, Jan van den Berg K, et al. Complementary use of Optical Coherence Tomography (OCT) and Reflection FTIR spectroscopy for in-situ non-invasive monitoring of varnish removal from easel paintings. Microchemical Journal. 2018; 138: 7-18. doi: https://doi.org/10.1016/j.microc.2017.12.016.
  • 14. Rodriguez S H, Appoloni C R, Campos PHOV, Gonçalves B, Kajiya EAM, Molari R, et al. NonDestructive and portable analyses helping the study and conservation of a Saraceni copper plate painting in the Sao Paulo museum art. Microchemical Journal. 2020; 104787. doi: https:// doi.org/https://doi.org/10.1016/j.microc.2020.10 4787.
  • 15. Costa TG, Silva BFP, Mattos LP, Escorteganha MR, Ritcher FA, Correia MDM, et al. Analysis of the constituent materials of 19th century paintings attributed to Louis-Auguste Moreaux belonging to the Historical Museum of Santa Catarina-Florianopoli, Brazil. Forensic Chemistry. 2019; 100177. doi: https://doi.org/https://doi.org/10.1016/j.forc.201 9.100177.
  • 16. Gil M, Manso M, Pessanha S, Manhita A, Cardoso A, Nunes M, et al. Old masters under the microscope.Technical and material comparison of a 17th c. mural and panel painting assigned to Jose de Escovar in Southern Portugal. Microchemical Journal. 2020; 104396. https://doi.org/10.1016/j.microc.2019.104396.
  • 17. Nevin A, Comelli D, Osticioli I, Toniolo L, Valentini G, Cubeddu R. Assesment of the ageing of triterpenoid paint varnishes using fluorescence, Raman and FTIR spectroscopy. Analytical and Bioanalytical. Chemistry 2009; 395:2139- 2149. doi: https://doi.org/10.1007/s00216-009- 3005-4.
  • 18. Ciofini D, Striova J, Camaiti M, Siano S. Photo-oxidative kinetics of solvent and oil-based terpenoid varnishes. Polymer Degredation and Stability. 2015; 30124-5. doi: https://doi.org/10.1016/j.polymdegradstab.2015 .11.002.
  • 19. Rie E. The Influence of varnishes on the appearance of paintings. Studies in Conservation. 1987; pp.1-13. doi: https://doi.org/10.1179/ sic.1987.32.1.1.
  • 20. Karadag R, Dolen E. Examination of Historical Textiles With Dyestuff Analyses by TLC and Derivative Spectrophotometry. Turkısh Journal of Chemistry. 1997; 21: 126-33. Url: https://journals.tubitak.gov.tr/chem/issues/kim97-21-2/kim-21-2-9-96058.pdf.
  • 21. Doleżyńska-Sewerniak E, Klisińska-Kopacz A. A characterization of the palette of Rafał Hadziewicz (1803–1886) through the following techniques: Infrared false colour (IRFC), XRF, FTIR, RS and SEM-EDS. Journal of Cultural Heritage. 2019 Mar;36:238–46. doi: https://doi.org/10.1016/j.culher.2018.09.001.
  • 22. Vahur S, Teearu A, Leito I. ATR-FT-IR spectroscopy in the region 550-230 cm-1 for identification of inorganic pigments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010; 75: 1061-72. doi: https://doi.org/10.1016/j.saa.2009.12.056.
  • 23. Van Loon A, Boon J.J. Characterization of the deterioration of bone black in the 17th century Oranjezaal paintings using electron-microscopic and micro-spectroscopic imaging techniques. Spectrochimica Acta Part B 59. 2004; 1601-9. doi: https://doi.org/10.1016/j.sab.2004.03.0 21.
  • 24. Monico L, Rosi F, Miliani C, Daveri A, Brunetti B. G. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochimica acta Part A: Molecular and Biomolecular Spectroscopy 116. 2013; 270-80. doi: https://doi.org/10.1016/j.saa.2013.06.084.
  • 25. Vetter W, Schreiner M. Characterization of pigment-bındıng media systems-comparison of non-invasive in-situ reflection FTIR wıth transmission FTIR microscopy. www.ePRESERVATIONScience.org 2011; 8, 10-22. url: https://www.researchgate.net/profile/Manfred_S chreiner/publication/ 312415149_Identification_and_Preservation_of_ Cultural_Heritage/links/ 5a4f528daca2726172bc8a95/Identification-andPreservation-of-Cultural-Heritage.pdf.
  • 26. Newman R. Some application of Infrared Spectroscopy in the examination of painting materials. Journal of the American Institute for Conservation. 1980;19: 42-62. doi: https://doi.org/10.1179/019713679806028977.
  • 27. Zangrando R, Piazza R, Cairns W. R. L, Izzo F.C, Vianello A. Quantitative determination of un-derivatised amino acids in artistic mural paintings using high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry. Analytica Chimica Acta. 2010; 675: 1-7. doi: https://doi.org/10.1016/j.aca.2010.06.045.
  • 28. Marras S, Pojana G, Ganzerla R, Marcomini A. Study and characterization of mural paintings from XIX century in a noble Venetian (Italy) palace. Microchemical Journal. 2010;96: 397- 405. doi: https://doi.org/10.1016/j.microc.2010.07.003.
  • 29. Costa TG, Ritcher FA, Correia M, Escorteganha MR, Santiago AG. Multi-technical analysis as a tool to investigate structural species in the “replica” of First Mass in Brazil painting by Sebastião Vieira Fernandes. Journal of Molecular Structure. 2016; 196-204. doi: https://doi.org/10.1016/j.molstruc.2016.05.019.
  • 30. Saverwyns S, Currie C, Lamas-Delgado E. Macro X-ray fluorescence scanning (MA-XRF) as tool in the authentication of paintings. Microchemical Journal. 2018;137: 139-47. doi: https://doi.org/10.1016/j.microc.2017.10.008.
  • 31. Giorgi L, Nevin A, Nodari L, Comelli D, Alberti R. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856-1945). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;219: 530-8. doi: https://doi.org/10.1016/j.saa.2019.04.083.
  • 32. Deveoglu O, Torgan E, Karadag R. The characterization by liquid chromatography of lake pigments prepared from European buckthorn (Rhamnus cathartica L.). Pigment & Resin Technology. 2012 ; 41: 331-8. doi: https:// doi.org/10.1108/03699421211274234.
  • 33. Deveoglu O, Erkan G, Torgan, E, Karadag R. The evaluation of procedures for dyeing silk with buckthorn and walloon oak on the basis of colour changes and fastness characteristics. Coloration Technology. 2013; 129: 223-31. doi: https://doi.org/10.1111/cote.12023.
  • 34. Deveoglu O, Karadag R, Torgan E, Yildiz Y. Examination of dyeing properties of the dyed cotton fabrics with barberry (Berberis vulgaris L.). Journal of Natural Fibers. 2018;1809-98. 1544-0478. doi: https://doi.org/10.1080/15440478.2018.155814 3.
  • 35. Yasukava Akemi, Chida Ayumi, Yoji Kato, Kasai Miki. Dyeing silk and cotton fabrics using natural blackcurrants. Sage Journals. 2017; 87:2379-87. doi: https://doi.org/10.1177%2F0040517516671125.
  • 36. Deveoglu O, Karadag R, Yurdu T. Qualitative HPLC determination of main anthraquınone and lake pigment contents from dactylopius coccus dye insect. Chemistry of Natural Compounds. 2011; 47: No.1. doi: https://doi.org/10.1007/s10600-011-9842-3.
  • 37. Deveoglu O, Torgan E, Karadag R. Identification by RP-HPLC-DAD of natural dyestuffs from lake pigments prepared with a mixture of weld and dyer’s oak dye plants. Journal of Liquid Chromatography & Related Technologies. 2012; 35: 331–42. doi: https://doi.org/10.1080/10826076.2011.601487.
  • 38. Deveoglu O, Cakmakcı E, Taskopru T, Torgan E, Karadag R. Identification by RP-HPLCDAD, FTIR, TGA and FESEM-EDAX of natural pigments prepared from Datisca cannabina L. Dyes and Pigments. 2012; 94: 437-42. doi: https://doi.org/10.1016/j.dyepig.2012.02.002.
  • 39. Karadag R, Torgan E, Taskopru T, Yildiz, Y. Characterization of dyestuffs and metals from selected 16–17th- century ottoman silk brocades by RP-HPLCDAD and FESEM-EDX. Journal of Liquid Chromatography & Related Technologies. 2015; 38:5 591-9. doi: https://doi.org/10.1080/10826076.2014.922476.
  • 40. Pintus V, Wei S, Schreiner M. Accelerated UV ageing studies of acrylic,alkyd, and polyvinyl acetate paints: Influence of inorganic pigments. Microchemical Journal. 2016; 124: 949-61. doi: https://doi.org/10.1016/j.microc.2015.07.009.
  • 41. Rosi F, Daveri A, Moretti P, Brunetti BG, Miliani C. Interpretation of mid and near-infrared reflection properties of synthetic polymer paints for the non-invasive assessment of binding media in twentieth-century pictorial artworks. Microchemical Journal. 2016; 124: 898-908. doi: https://doi.org/10.1016/j.microc.2015.08.019.
  • 42. Banti A, La Nasa J, Tenorio AL, Modugno F, Jan KVD, Ormsby B, et al. A molecular study of modern oil paintings: investigating the role of dicarboxylic acids in the water sensitivity of modern oil paints. Royal Society of Chemistry Advances. 2018; 8: 6001-12. doi: https://doi.org/ 10.1039/C7RA13364B.
  • 43. Şahinbaşkan B. Y, Karadag R, Torgan E. Dyeing of silk fabric with natural dyes extracted from cochineal (Dactylopius coccus Costa) and gall oak (Quercus infectoria Oliver). Journal of Natural Fibers. 2017. doi: https://doi.org/10.1080/15440478.2017.134970 8.
  • 44. Karadag R, Yurdun T. Dyestuff and Colour Analyses of the Seljuk Carpets in Konya Ethnography Museum. The International Institute for Conservation of Historic & Artistic Works. 2010. doi: https://doi.org/10.1179/sic.2010.55.Supplement -2.178.
  • 45. Nayak R, Houshyar S, Khandual A, Padhye R, Fergusson S. Handbook of Natural Fibres (Second Edition) Volume 1: Types, Properties and Factors Affecting Breeding and Cultivation In: Kozlowski R. M, Talarczyk M. M. (editors). Chapter 14: Identification of natural textile fibres . 2020; pp. 503-34. doi: https://doi.org/10.1016/B978-0-12-818398- 4.00016-5.
  • 46. Sanches D, Ramos AM, Coelho JFJ, Costa CSF, Vilarigues M, Melo MJ. Correlating thermophysical properties with the molecular composition of 19th century chrome yellow oil paints. Polymer Degradation and Stability. 2017; 138: 201-11. doi: https://doi.org/10.1016/j.polymdegradstab.2017 .02.010.
  • 47. Izzo FC. 20th Century Artist’s Oil Paints; A Chemical-Physical Survey.Thesis for: PhD in Chemical Science-Conservation Science. 2011May. Url: http://hdl.handle.net/10579/1100.
  • 48. Maryse M. dottorato di ricerca Application of FTIR microscopy to cultural heritage materials. 2009. doi: https://doi.org/10.6092/unibo/amsdottorato/1404.
  • 49. Delamare F, Guineau B. Les matériaux de la couleur. Paris: Gallimard; 1999. 159 p. (Découvertes Gallimard). Url: https://www.bcin.ca/bcin/detail.app?id=192315.
APA cakmak y, Karadag R, Kayaman Apohan N, aral Ö, ÇAKMAKÇI E (2021). Characterization of the Alphabet Reform Painting. , 249 - 262. 10.18596/jotcsa. 813787
Chicago cakmak yildiz,Karadag Recep,Kayaman Apohan Nilhan,aral Ömer Yigit,ÇAKMAKÇI Emrah Characterization of the Alphabet Reform Painting. (2021): 249 - 262. 10.18596/jotcsa. 813787
MLA cakmak yildiz,Karadag Recep,Kayaman Apohan Nilhan,aral Ömer Yigit,ÇAKMAKÇI Emrah Characterization of the Alphabet Reform Painting. , 2021, ss.249 - 262. 10.18596/jotcsa. 813787
AMA cakmak y,Karadag R,Kayaman Apohan N,aral Ö,ÇAKMAKÇI E Characterization of the Alphabet Reform Painting. . 2021; 249 - 262. 10.18596/jotcsa. 813787
Vancouver cakmak y,Karadag R,Kayaman Apohan N,aral Ö,ÇAKMAKÇI E Characterization of the Alphabet Reform Painting. . 2021; 249 - 262. 10.18596/jotcsa. 813787
IEEE cakmak y,Karadag R,Kayaman Apohan N,aral Ö,ÇAKMAKÇI E "Characterization of the Alphabet Reform Painting." , ss.249 - 262, 2021. 10.18596/jotcsa. 813787
ISNAD cakmak, yildiz vd. "Characterization of the Alphabet Reform Painting". (2021), 249-262. https://doi.org/10.18596/jotcsa. 813787
APA cakmak y, Karadag R, Kayaman Apohan N, aral Ö, ÇAKMAKÇI E (2021). Characterization of the Alphabet Reform Painting. Journal of the Turkish Chemical Society, Section A: Chemistry, 8(1), 249 - 262. 10.18596/jotcsa. 813787
Chicago cakmak yildiz,Karadag Recep,Kayaman Apohan Nilhan,aral Ömer Yigit,ÇAKMAKÇI Emrah Characterization of the Alphabet Reform Painting. Journal of the Turkish Chemical Society, Section A: Chemistry 8, no.1 (2021): 249 - 262. 10.18596/jotcsa. 813787
MLA cakmak yildiz,Karadag Recep,Kayaman Apohan Nilhan,aral Ömer Yigit,ÇAKMAKÇI Emrah Characterization of the Alphabet Reform Painting. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.8, no.1, 2021, ss.249 - 262. 10.18596/jotcsa. 813787
AMA cakmak y,Karadag R,Kayaman Apohan N,aral Ö,ÇAKMAKÇI E Characterization of the Alphabet Reform Painting. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(1): 249 - 262. 10.18596/jotcsa. 813787
Vancouver cakmak y,Karadag R,Kayaman Apohan N,aral Ö,ÇAKMAKÇI E Characterization of the Alphabet Reform Painting. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(1): 249 - 262. 10.18596/jotcsa. 813787
IEEE cakmak y,Karadag R,Kayaman Apohan N,aral Ö,ÇAKMAKÇI E "Characterization of the Alphabet Reform Painting." Journal of the Turkish Chemical Society, Section A: Chemistry, 8, ss.249 - 262, 2021. 10.18596/jotcsa. 813787
ISNAD cakmak, yildiz vd. "Characterization of the Alphabet Reform Painting". Journal of the Turkish Chemical Society, Section A: Chemistry 8/1 (2021), 249-262. https://doi.org/10.18596/jotcsa. 813787