Mustafa Kemal YÖNTEM
(Nevşehir Hacı Bektaş Veli Üniversitesi, Eğitim Fakültesi, Eğitim Bilimleri Bölümü)
KEMAL ADEM
(Aksaray Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, Yönetim Bilişim Sistemleri Bölümü)
Tahsin İLHAN
(Tokat Gaziosmanpaşa Üniversitesi, Eğitim Fakültesi, Eğitim Bilimleri Bölümü)
Serhat KILIÇARSLAN
(Tokat Gaziosmanpaşa Üniversitesi, Rektörlük, Enformatik Bölümü)
Yıl: 2019Cilt: 9Sayı: 1ISSN: 2149-3871 / 2149-3871Sayfa Aralığı: 259 - 273İngilizce

32 0
DIVORCE PREDICTION USING CORRELATION BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORKS
Within the scope of this research, the divorce prediction was carried out by using the Divorce Predictors Scale (DPS) on the basis of Gottman couples therapy. Of the participants, 84 (49%) were divorced and 86 (51%) were married couples. Participants completed the “Personal Information Form” and “Divorce Predictors Scale”. In this study, the success of DPS, was investigated using Multilayer Perceptron Neural Network and C4.5 Decision tree algorithms. In addition, the study also aims to find the most significant features/items in the Divorce Predictors Scale that affect the divorce. The most effective 6 features and their values of significance obtained by applying the correlation-based feature selection method on the divorce data set. When we look at these features, they are related to creating a common meaning and failed attempts to repair, love map and negative conflict behaviors. When the direct classification methods were applied to the divorce data set, the highest success rate was 98.23% obtained with the RBF neural network. After selecting the most effective 6 features using the correlation-based feature selection method on the same data set, the highest accuracy rate obtained was 98.82% with ANN. According to the results, DPS can predict divorce. Family counselors and family therapists can use this scale for contribute to the preparation of case formulation and intervention plan. Also it can be said that the divorce predictors in the Gottman couples therapy were confirmed in the Turkish sampling.
DergiAraştırma MakalesiErişime Açık
  • Babcock, J.C., Gottman, J., Ryan, K. and Gottman, J. (2013). A Component Analysis of a Brief Psycho‐Educational Couples' Workshop: One‐year Follow‐up Results. Journal of Family Therapy, 35(3), 252-280.
  • Baca-García, E., et al. (2006). Using Data Mining to Explore Complex Clinical Decisions: A Study of Hospitalization After Suicide Attempt. Journal of Clinical Psychiatry, 67(7), 1124-1132.
  • Bae, S. M., Lee, S. H., Park, Y. M., Hyun, M. H., and Yoon, H. (2010). Predictive Factors of Social Functioning in Patients With Schizophrenia: Exploration For The Best Combination of Variables Using Data Mining. Psychiatry Investigation, 7(2), 93-101.
  • Barnacle, R. ES, and Abbott, D. A. (2009). The Development and Evaluation of a Gottman-Based Premarital Education Program: A Pilot Study. Journal of Couple and Relationship Therapy, 8(1), 64-82.
  • Çelik, E., Atalay, M. and Bayer, H. (2014). Yapay Sinir Ağları ve Destek Vektör Makineleri ile Deprem Tahmininde Sismik Darbelerin Kullanılması. 22nd Signal Processing and Communications Applications Conferance (SIU), 730-733.
  • Eriksson, R., Werge, T., Jensen, L. J., and Brunak, S. (2014). Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population. Drug Safety, 37(4), 237-247.
  • Ertunc, H. M., Ocak, H. and Aliustaoglu, C. (2013). ANN-and ANFIS-based MultiStaged Decision Algorithm for the Detection and Diagnosis of Bearing Faults. Neural Computing and Applications, 22(1): 435-446.
  • Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. (1996). Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence Menlo Park, CA, USA.
  • Gottman, J. M. (1999). The Marriage Clinic: A Scientifically-Based Marital Therapy. New York: WW Norton and Company.
  • Gottman, J. M. (2014). What Predicts Divorce? The Relationship Between Marital Processes and Marital Outcomes. New York: Psychology Press.
  • Gottman, J. M. and Gottman, J.S. (2012). Çiftler Arasında Köprüyü İnşa Etmek: Gottman Çift Terapisi Eğitimi 1. Düzey Kitabı, [Level 1 Clinical Training. Gottman Method Couples Therapy. Bringing to Couple Chasm.] İstanbul: Psikoloji İstanbul.
  • Gottman, J. ve Silver, N. (2014). Aşk Nasıl Sürdürülür. Aşk Laboratuarından Sırlar. (trans. Gül, S.S.) [What Make Love Last. How to Build Trust and Avoid Betrayal. 2012]. İstanbul: Varlık Yayınları.
  • Gottman, J. and Silver, N. (2015). Evliliği Sürdürmenin Yedi İlkesi.(trans. Gül, S.S.). [The Seven Principles for Making Marriage Work. 1999] İstanbul: Varlık Yayınları.
  • Hall, M. (1999). Correlation-Based Feature Selection for Machine Learning. Phd Thesis, Department Of Computer Science, Waikato University, New Zealand, 26- 28.
  • Hall, M. A. and Smith, L. A. (1998). Practical Feature Subset Selection for Machine Learning. In Computer Science’98 Proceedings of the 21st Australasian Computer Science Conference ACSC, 98: 181-191.
  • Han, J., Kamber, M. and Pei, J. (2006). Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers, 230-240.
  • Holman, T. B. and Jarvis, M. O. (2003). Hostile, Volatile, Avoiding, and Validating Couple‐Conflict Types: An Investigation of Gottman's Couple‐Conflict Types. Personal Relationships, 10(2): 267-282.
  • Karaatlı, M., Helvacıoğlu, Ö. C., Ömürbek, N. and Tokgöz, G. (2012). Yapay Sinir Ağları Yöntemi İle Otomobil Satış Tahmini. Uluslararası Yönetim İktisat ve İşletme Dergisi, 8(17): 87-100.
  • Karahan, M. (2015). Turizm Talebinin Yapay Sinir Ağları Yöntemiyle Tahmin Edilmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 20(2), 195-209.
  • Kaynar, O., Aydın, Z. and Görmez, Y. (2017). Sentiment Analizinde Öznitelik Düşürme Yöntemlerinin Oto Kodlayıcılı Derin Öğrenme Makinaları ile Karşılaştırılması. Bilişim Teknolojileri Dergisi, 10(3): 319-326.
  • Kaynar, O., Taştan, S. and Demirkoparan, F. (2011). Yapay Sinir Ağları ile Doğalgaz Tüketim Tahmini. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 25.
  • Nguyên, X., Chaskalovis, J., Rakotonanahary, D. and Fleury, B. (2010). Insomnia Symptoms and CPAP Compliance in OSAS Patients: A Descriptive Study Using Data Mining Methods. Sleep Medicine, 11(8): 777-784.
  • Qinghua, J. (2016). Data Mining and Management System Design and Application for College Student Mental Health. Intelligent Transportation, Big Data and Smart City (ICITBS), International Conference on IEEE: 410-413.
  • Rosenthal, D. A., Dalton, J. A., and Gervey, R. (2007). Analyzing Vocational Outcomes of Individuals With Psychiatric Disabilities Who Received State Vocational Rehabilitation Services: A Data Mining Approach. International Journal of Social Psychiatry, 53(4): 357-368.
  • Schalkoff, R. J. (1997). Artificial Neural Networks (Vol. 1). New York: McGrawHill.
  • Song, Q. (2010). The Comparison and Analysis of Classification Methods for Psychological Assessment Data. Information Science and Engineering (ICISE), 2nd International Conference on.(IEEE). 4133-4135.
  • Shapiro, A. and Gottman, J. (2005). Effects on Marriage of a PsychoCommunicative-Educational Intervention with Couples Undergoing the Transition to Parenthood, Evaluation at 1-year Post Intervention. Journal Of Family Communication, 5(1), 1-24.
  • Shapiro, A. F., Nahm, E. Y., Gottman, J. M., and Content, K. (2011). Bringing Baby Home Together: Examining the Impact of a Couple‐Focused Intervention on the Dynamics within Family Play. American Journal of Orthopsychiatry, 81(3), 337.
  • Uğur, A. and Kınacı, A. C. (2006). Yapay Zeka Teknikleri ve Yapay Sinir Ağları Kullanılarak Web Sayfalarının Sınıflandırılması. XI. Türkiye'de İnternet Konferansı (inet-tr'06).
  • Yöntem, M.K. and İlhan, T.(2018). Boşanma Göstergeleri Ölçeği: Güvenirlik ve Geçerlik Çalışması. X. Uluslararası Eğitim Araştırmaları Kongresi. Nevsehir, Turkey.
  • Yöntem, M.K. and İlhan, T. (2018). Boşanma Göstergeleri Ölçeğinin Geliştirilmesi. [Development of the Divorce Predictors Scale]. Sosyal Polika Çalışmaları Dergisi. 41, 339-358.
  • Yöntem, M. K., Adem, K., İlhan, T., and Kılıçarslan, S. (2018). Çok Katmanlı Algılayıcı Sinir Ağı ve C4. 5 Karar Ağacı Algoritmaları ile Boşanma Tahmini.
  • International Congress on Politic, Economic and Social Studies (ICPESS).

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.