İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi

Yıl: 2020 Cilt: 11 Sayı: 1 Sayfa Aralığı: 188 - 209 Metin Dili: Türkçe DOI: 10.16949/turkbilmat.655216 İndeks Tarihi: 16-03-2021

İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi

Öz:
Günümüz gelişen bilgi dünyasında disiplinler arası çalışmaların önem kazanmasıyla birlikte, öğretim programlarında bu yönde yenilikçi eğitim yaklaşımları benimsenmeye başlanmıştır. Yenilikçi eğitim yaklaşımlarından biri de FeTeMM (STEM) eğitimidir. Türkiye’nin 2011 ve 2015 TIMSS uygulamasındaki performansı matematik ve fen alanındaki yeterlik düzeylerine göre incelendiğinde; matematik ve fen alanında 4. sınıf öğrencilerinin büyük bir çoğunluğunun henüz orta düzey yetenek seviyesine erişemediği görülmektedir. Elde edilen sonuçların değişmesi ve gelecek dönemin ihtiyaç duyduğu bireyleri yetiştirmek için FeTeMM eğitimi önemli bir yere sahiptir. Erken yaşlarda edinilen tutumlarda, önemli yaşantı ve deneyimler yaşanmadığı sürece, tutumun kolay bir şekilde değişmediği dikkate alınırsa özellikle öğrencinin ilk eğitim-öğretim yeri olan ilkokul döneminin, bireyin bir duruma yönelik tutum oluşturmasında oldukça etken bir faktör olduğu düşünülmektedir. Bu bağlamda çalışmanın amacı, ilkokul dördüncü sınıf öğrencilerinin FeTeMM tutum düzeylerini belirlemektir. Araştırmada , ilkokul dördüncü sınıf öğrencilerinin FeTeMM tutum düzeylerinin belirlenmesi amacıyla nicel araştırma desenlerinden betimsel tarama modeli kullanılmıştır. Araştırma 2018-2019 eğitim öğretim yılı bahar döneminde gerçekleştirilmiştir. Araştırmanın çalışma grubunu Türkiye’nin güneyinde yer alan ve orta sosyo-ekonomik düzeydeki devlet okullarında öğrenim gören ilkokul dördüncü sınıf düzeyinden 322 öğrenci oluşturmaktadır. Araştırmada veri toplama aracı olarak STEM Tutum Ölçeği kullanılmıştır. STEM Tutum Ölçeği, Guzey, Harwell ve Moore (2014) tarafından geliştirilmiş ve dilimize Aydın, Saka ve Guzey (2017) tarafından uyarlanmıştır. Verilerin çözümlenmesinde frekans, aritmetik ortalama, standart sapma değerleri ve fark testleri kullanılmıştır. İlkokul dördüncü sınıf öğrencilerinin FeTeMM tutum düzeylerinin araştırıldığı çalışmada, öğrencilerin fen, mühendislik, matematik ve teknolojinin entegre edilerek uygulandığı herhangi bir FeTeMM uygulamasını deneyimlememiş olmalarına rağmen FeTeMM tutumlarının katılıyorum düzeyinde yani iyi seviyede olduğu belirlenmiştir. Öğrencilerin FeTeMM tutumlarının, cinsiyet, okul öncesi eğitim alma, meslek seçimi ve baba eğitim düzeyine göre farklılık göstermediği belirlenirken, anne eğitim düzeyine göre anlamlı farklılık gösterdiği belirlenmiştir.
Anahtar Kelime:

Evaluation of Elementary School Fourth Grade Students' Science, Technology, Engineering, Mathematics (STEM) Attitudes in Terms of Various Variables

Öz:
With the increasing importance of interdisciplinary studies in today's developing world of knowledge, innovative educational approaches have started to be adopted in teaching programs in this direction. One of the innovative training approaches is STEM education. Turkey's 2011 and 2015 TIMSS is analyzed according to the level of proficiency in mathematics and science performance in the application of mathematics and science shows that a majority of elementary school fourth grade students' have access yet to the level of mid-level talent. STEM education has an important place in order to change the results obtained and to educate the individuals needed in the future. In this context, the aim of the study is to determine the levels of attitude towards STEM of the fourth grade elementary school students. In this study, descriptive survey model, which is one of the quantitative research designs, was used to determine STEM attitude levels of fourth grade students. The research was conducted in the spring semester of 2018-2019 academic years. Turkey is located south of the working group of the research and studying in medium socio-economic level in state schools from fourth grade to create 322 primary school students. STEM Attitude Scale was used as data collection tool in the study. STEM Attitude Scale was developed by Guzey, Harwell and Moore (2014) and adapted to Turkish language by Aydın, Saka and Guzey (2017). Frequency, arithmetic mean, standard deviation values and difference tests were used to analyze the data. Although STEM attitude elementary school fourth grade students were investigated, it was determined that STEM attitudes were at a good level in agreement with the students although they did not experience any STEM application that integrated science, engineering, mathematics and technology. While STEM attitudes of the students did not differ according to gender, pre-school education, career choice and father education level, it was determined that there was a significant difference according to mother education level.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akgunduz, D., Aydeniz, M., Cakmakci, G., Cavas, B., Corlu, M. S., Oner, T., & Ozdemir, S. (2015). A report on STEM Education in Turkey. Istanbul, Turkey: Aydin University.
  • Archer, L., Osborne, J., DeWitt, J., Dillon, J., Wong, B., & Willis, B. (2013). ASPIRES: Young people‟s science and career aspirations, age 10-14. London: King’s College.
  • Aronin, S., & Floyd, K. K. (2013). Using an iPad in inclusive preschool classrooms to introduce STEM concepts. Teaching Exceptional Children, 45(4), 34-39.
  • Aschbacher, P. R., Ing, M., & Tsai, S. M. (2014). Is science me? Exploring middle school students’ STEM career aspirations. Journal of Science Education and Technology, 23(6), 735-743.
  • Aydın, G., Saka, M., & Guzey, S. (2017). Science, technology, engineering, mathematic (STEM) attitude levels in grades 4th - 8th. Mersin University Journal of the Faculty of Education, 13(2), 787-802.
  • Aydın, G., Saka, M., & Guzey, S. (2018). Engineering knowledge level measurement scale for students in grades 4 through 8. Elementary Education Online, 17(2), 750-768.
  • Becker, K., & Park, K. (2011). Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students' learning: A preliminary meta-analysis. Journal of STEM Education: Innovations & Research, 12(5-6), 23-37.
  • Britner, S. L., & Pajares, F. (2006). Sources of science self‐efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485-499.
  • Brown, P. L., Concannon, J. P., Marx, D., Donaldson, C. W., & Black, A. (2016). An examination of middle school students' STEM self-efficacy with relation to interest and perceptions of STEM. Journal of STEM Education: Innovations and Research, 17(3), 27-38.
  • Buxton, C. A. (2001). Exploring science-literacy-in-practice: Implications for scientific literacy from an anthropological perspective. Electronic Journal of Literacy through Science, 1(1), 1-36.
  • Catsambis, S. (1994). The path to math: Gender and racial-ethnic differences in mathematics participation from middle school to high school. Sociology of Education, 67, 199-215.
  • Ceylan, O., Ermis, G., & Yıldız, G. (2018, November). Attitudes of special talented students towards science, technology, engineering, mathematics (STEM) education. In G. Akkaya & P. Ertekin (Eds.), Proceedings of the International Congress on Gifted and Talented Education (pp. 64-75). Malatya: Inonu University.
  • Chen, P., & Zimmerman, B. (2007). A cross-national comparison study on the accuracy of self-efficacy beliefs of middle-school mathematics students. The Journal of Experimental Education, 75(3), 221-224.
  • Chesloff, J. D. (2013). STEM education must start in early childhood. Education Week, 32(23), 27-32.
  • Choi, N., & Chang, M. (2009). Performance of middle school students. comparing U.S and Japanese inquiry-based science practices in middle schools. Middle Grades Research Journal, 6(1), 29-47.
  • Christensen, L. B., Johnson, R. B., & Turner, L. A. (2015). Research methods design and analysis (A. Aypay, Trans. Ed.). Ankara: Anı Publishing.
  • Christensen, R., & Knezek, G. (2017). Relationship of middle school student STEM interest to career intent . Journal of Education in Science, Environment and Health (JESEH), 3(1), 1-13.
  • Cotabish, A., Dailey, D., Robinson, A., & Hughes, G. (2013). The effects of a STEM intervention on elementary students' science knowledge and skills. School Science and Mathematics, 113(5), 215-226.
  • Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M., & Hazari, Z. (2012). Out-of-school time science activities and their association with career interest in STEM. International Journal of Science Education, Part B: Communication and Public Engagement, 2(1), 63-79.
  • Dasgupta, N., & Stout, J. G. (2014). Girls and women in science, technology, engineering, and mathematics: STEMING the tide and broadening participation in STEM careers. Policy Insights from the Behavioral and Brain Sciences, 1(1), 21-29.
  • DeJarnette, N. (2012). America's children: Providing early exposure to STEM (science, technology, engineering and math) initiatives. Education, 133(1), 77-84.
  • Desy, E. A., Peterson, S. A., & Brockman, V. (2011). Gender differences in science-related attitudes and interests among middle school and high school students. Science Educator, 20(2), 23–30.
  • Diekman, A. B., Brown, E. R., Johnston, A. M., & Clark, E. K. (2010). Seeking congruity between goals and roles: A new look at why women opt out of science, technology, engineering, and mathematics careers. Psychological Science, 21, 1051-1057.
  • English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5-24.
  • Fouad, N. A., & Smith, L. P. (1996). A test of a social cognitive model for middle school students: Math and science. Journal of Counseling Psychology, 43(3), 338–346.
  • Freedman, J. L., Sears, D. O., & Carlsmith, J. M. (1989). Social psychology (A. Donmez, Trans.). İstanbul: Ara Publishing.
  • Genc, G., Kaya, A., & Genc, M. (2007). Factors affecting career choice of medical faculty students at Inonu University. Inonu University Journal of the Faculty of Education, 8(14), 49-63.
  • Guzey, S. S., Harwell, M., & Moore, T. (2014). Development of an instrument to assess attitudes toward science, technology, engineering, and mathematics (STEM). School Science and Mathematics, 114(6), 271-279.
  • Gulhan, F., & Sahin, F. (2016). The effect of science-technology-engineering-mathematics integration (STEM) on the perceptions and attitudes of 5th grade students in these fields. International Journal of Human Sciences, 13(1), 602-620.
  • Gulhan, F., & Sahin, F. (2018). Why STEM education?: Investigation of middle school 5th grade students' career choices in STEM fields. Journal of STEAM Education, 1(1), 1-23.
  • Haverlo, C. (2011). STEM development: A study of 6th-12th grade girls' interest and confidence in mathematics and science (Unpublished doctoral dissertation). Iowa State Universtiy, Iowa, the USA.
  • Honey, M., Pearson, G., & Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, D.C.: National Academies Press.
  • Hudson, P., English, L. D., & Dawes, L. (2012, November). Catapulting into STEM education: Female students‟ interactions within a middle school engineering project. Paper presented at the 2nd International STEM in Education Conference, Beijing, China.
  • Karakaya, F., & Avgin, S. S. (2016). Effect of demographic features to middle school students’ attitude towards FeTeMM (STEM). Journal of Human Sciences, 13(3), 4188-4198.
  • Karakaya, F., Avgin, S. S., & Yilmaz, M. (2018). Middle school students' interest in science-technology engineering and mathematics (STEM) professions. Ihlara Journal Educational Research, 3(1), 36-53.
  • Kjaernsli, M., & Lie, S. (2011). Students’ preference for science careers: International comparisons based on PISA 2006. International Journal of Science Education, 33(1), 121–144.
  • Knezek, G., Christensen, R., & Tyler-Wood, T. (2011). Contrasting perceptions of STEM content and careers. Contemporary Issues in Technology and Teacher Education, 11(1), 92-117.
  • Knezek, G., Christensen, R., Tyler-Wood, T., & Periathiruvadi, S. (2013). Impact of environmental power monitoring activities on middle school student perceptions of STEM. Science Education International, 24(1), 98-123.
  • Kong, X., Dabney, K. P., & Tai, R. H. (2014). The association between science summer camps and career interest in science and engineering. International Journal of Science Education, 4(1), 54-65.
  • Lacey, T. A., & Wright, B. (2009). Occupational employment projections to 2018. Monthly Labor Review, 132(11), 82-123.
  • Lamb, R., Akmal, T., & Petrie, K. (2015). Development of a cognition‐priming model describing learning in a STEM classroom. Journal of Research in Science Teaching, 52(3), 410-437.
  • Liu, F. (2008). Impact of online discussion on elementary teacher candidates' anxiety towards teaching mathematics. Education, 128(4), 614-630.
  • Mahoney, M. P. (2009). Student attitude toward STEM: Development of an instrument for high school STEM-based programs (Unpublished doctoral dissertation). The Ohio State University, the USA.
  • Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: Sources of early interest in science. International Journal of Science Education, 32(5), 669-685.
  • Miaoulis, I. N. (2009). Engineering the K-12 curriculum for technological innovation. IEEEUSA Today‟s Engineer Online. Retrieved November 16, 2019 from https://insight.ieeeusa.org/.
  • Ministry of National Education [MoNE]. (2014). TIMSS 2011 national math and science report 4th graders. Ankara: Innovation and Educational Technologies General Directorate.
  • Ministry of National Education [MoNE]. (2016). TIMSS 2015 national math and science report 4th graders. Ankara: Innovation and Educational Technologies General Directorate.
  • Modi, K., Schoenberg, J., & Salmond, K. (2012). Generation STEM: What girls say about science, technology, engineering, and math. A Report from the Girl Scout Research Institute. New York, NY: Girl Scouts of the USA.
  • Murphy, M. C., Steele, C., & Gross, J. (2007). Signaling threat: How situational cues affect women in math, science, and engineering settings. Psychological Science, 18, 879-885.
  • National Research Council [NRC]. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, D.C.: National Academies Press.
  • National Science Foundation [NSF]. (2003). New formulas for America‟s workforce: Girls in science and engineering. Arlington, VA: Author.
  • Nazier, G. L. (2010). Science and engineering professors: Why did they choose science as a career? School Science and Mathematics, 93(6), 321–327.
  • Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math = Male, Me = Female, Therefore Math ≠ Me. Journal of Personality and Social Psychology, 83, 44-59.
  • Ocak, M. H. (2017). Investigation of students„ attitudes towards STEM and the relationships with career preferences (Unpublished master’s thesis). Yeditepe University, Institute of Educational Sciences, Istanbul.
  • Organisation for Economic Co-operation and Development [OECD]. (2017). Education at a Glance. Retrieved November 16, 2019 from http://www.oecd.org/education/educationataglance2017-countrynotes.htm.
  • Pajares, F., Britner, S. L., & Valiante, G. (2000). Relation between achievement goals and self-beliefs of middle school students in writing and science. Contemporary Educational Psychology, 25, 406-422.
  • Turkish Industrialists and Businessmen Association [TÜSİAD]. (2017). The STEM need in Turkey for 2023. Retrieved November 16, 2019 from https://tusiad.org/tr/yayinlar/raporlar/item/9735-2023-e-dog-ru-tu-rkiye-de-stem-gereksinimi.
  • Ricks, M. M. (2006). A study of the impact of an informal science education program on middle school students‟ science knowledge, science attitude, STEM high school and college course selections, and career decisions (Unpublished doctoral dissertation). The University of Texas, Texas, the USA.
  • Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5(3), 17-28.
  • Saad, M. E. (2014). Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning (Unpublished master’s thesis). University of North Dakota, North Dakota. Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.
  • Sarikaya, T., & Khorshid, L. (2009). The investigation of the factors that affect university students’ profession choice: University students’ profession choice. The Journal of Turkish Educational Sciences, 7(2), 393-423.
  • Spencer, M. E. (2011). Engineering perspectives of grade 7 students in Canada (Unpublished master’s thesis). Queen’s University Kingston, Ontario, Canada.
  • Tamis-LeMonda, C. S., Luo, R., McFadden, K. E., Bandel, E. T., & Vallotton, C. (2019). Early home learning environment predicts children’s 5th grade academic skills. Applied Developmental Science, 23(2), 153-169.
  • Tseng, K. H., Chang, C. C., Lou, S. J., & Chen W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal Technology Design Education, 23, 87-102.
  • Walker, M. (2001). Engineering identities. British Journal of Sociology of Education, 22, 75-89.
  • Wang, H. (2012). A New era of science education: science teachers„ perceptions and classroom practices of science, technology, engineering, and mathematics (STEM) integration (Unpublished doctoral dissertation). University of Minnesota, the USA.
  • Wyss, V. L., Heulskamp, D., & Siebert, C. J. (2012). Increasing middle school student interest in STEM careers with videos of scientists. International Journal of Environmental and Science Education, 7(4), 501-522.
  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-19.
APA ALBAYRAK H, TÜMKAYA S (2020). İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. , 188 - 209. 10.16949/turkbilmat.655216
Chicago ALBAYRAK H. Beyza,TÜMKAYA SONGÜL İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. (2020): 188 - 209. 10.16949/turkbilmat.655216
MLA ALBAYRAK H. Beyza,TÜMKAYA SONGÜL İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. , 2020, ss.188 - 209. 10.16949/turkbilmat.655216
AMA ALBAYRAK H,TÜMKAYA S İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. . 2020; 188 - 209. 10.16949/turkbilmat.655216
Vancouver ALBAYRAK H,TÜMKAYA S İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. . 2020; 188 - 209. 10.16949/turkbilmat.655216
IEEE ALBAYRAK H,TÜMKAYA S "İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi." , ss.188 - 209, 2020. 10.16949/turkbilmat.655216
ISNAD ALBAYRAK, H. Beyza - TÜMKAYA, SONGÜL. "İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi". (2020), 188-209. https://doi.org/10.16949/turkbilmat.655216
APA ALBAYRAK H, TÜMKAYA S (2020). İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 11(1), 188 - 209. 10.16949/turkbilmat.655216
Chicago ALBAYRAK H. Beyza,TÜMKAYA SONGÜL İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi 11, no.1 (2020): 188 - 209. 10.16949/turkbilmat.655216
MLA ALBAYRAK H. Beyza,TÜMKAYA SONGÜL İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, vol.11, no.1, 2020, ss.188 - 209. 10.16949/turkbilmat.655216
AMA ALBAYRAK H,TÜMKAYA S İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi. 2020; 11(1): 188 - 209. 10.16949/turkbilmat.655216
Vancouver ALBAYRAK H,TÜMKAYA S İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi. 2020; 11(1): 188 - 209. 10.16949/turkbilmat.655216
IEEE ALBAYRAK H,TÜMKAYA S "İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi." Türk Bilgisayar ve Matematik Eğitimi Dergisi, 11, ss.188 - 209, 2020. 10.16949/turkbilmat.655216
ISNAD ALBAYRAK, H. Beyza - TÜMKAYA, SONGÜL. "İlkokul Dördüncü Sınıf Öğrencilerinin Fen, Teknoloji, Mühendislik, Matematik (FeTeMM) Tutumlarının Çeşitli Değişkenler Açısından Değerlendirilmesi". Türk Bilgisayar ve Matematik Eğitimi Dergisi 11/1 (2020), 188-209. https://doi.org/10.16949/turkbilmat.655216