Yıl: 2020 Cilt: 35 Sayı: 1 Sayfa Aralığı: 193 - 211 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.451652 İndeks Tarihi: 07-01-2021

Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması

Öz:
Bu çalışmada, mükemmele yakın yeniden yapılandırmalı M-kanallı kosinüs modüleli tekdüze süzgeçöbeklerinin tasarımı için yeni bir yöntem sunulmaktadır. Önerilen bu yöntemde, süzgeç öbeklerinin prototipsüzgeç tasarımı için üstel pencere kullanılmıştır. Önerilen sistemin performansı farklı kanal sayıları,minimum durdurma bandı zayıflatmaları ve süzgeç uzunlukları için tasarımlar yaparak genlik ve örtüşmehataları cinsinden analiz edilmiştir. Sonra, pratik tasarım örneği olarak, önerilen yöntem kullanarak seskodlayıcılarında kullanılan süzgeç öbeğine yakın 32-kanallı ve 100 dB durdurma bandı zayıflatmasına sahipbir kosinüs modüleli süzgeç öbeği tasarlanmış ve Kaiser penceresi tabanlı Lin yöntemiyle kıyaslanmıştır.Bununla birlikte, önerilen yöntem ve Lin yöntemiyle tasarlanan süzgeç öbekleri; farklı kanal sayıları,minimum durdurma bandı zayıflatmaları ve süzgeç uzunluklarında genlik ve örtüşme hataları cinsindenkıyaslanmıştır. Son olarak önerilen yöntem ve Lin yöntemiyle tasarlanan süzgeç öbeklerinin farklıelektrokardiyogram (EKG) işaretlerinin altbant işleme uygulamasındaki performansları incelenmiştir.Benzetim sonuçları, önerilen yöntemle oluşturulan süzgeç öbeklerinin hem genlik ve örtüşme hataları hemde EKG altbant işleme uygulaması performans değerlendirme parametreleri cinsinden Lin yöntemiyletasarlanan süzgeç öbeklerine göre daha iyi performans sergileyebileceğini göstermiştir.
Anahtar Kelime:

Design, analysis, and ECG subband processing application of new M-channel cosine modulated uniform filter banks based on exponential window family

Öz:
In this study, a new method for the design of M-channel cosine modulated uniform filter banks with near perfect reconstruction is presented. In this proposed method, the exponential window is used for the design of prototype filter of the filter banks. Performance of the proposed system has been analyzed in terms of amplitude and aliasing errors by making designs for different channel numbers, minimum stopband attenuations, and filter lengths. Later, as a design example, a cosine modulated filter bank having 32-channel and a stopband attenuation with 100 dB is designed by using the proposed method and compared with Kaiser window based Lin’s method. In addition, the filter banks designed by the proposed method and Lin’s method are compared in terms of the amplitude and aliasing errors for different channel numbers, minimum stopband attenuations, and filter lengths. Finally, performances of the filter banks designed by the proposed method and Lin’s method on subband processing application of various electrocardiogram (ECG) signals are investigated. Simulation results demonstrate that the filter banks designed by proposed method can exhibit better performance than the ones designed by Lin’s method in terms of both amplitude and aliasing errors and performance evaluation parameters of ECG subband processing application.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Milic L., Multirate Filtering for Digital Signal Processing: Matlab Applications, First Edition, Information Science Reference, New York, A.B.D., 2009.
  • 2. Johnston J.D., A Filter Family Design for Use in Quadrature Mirror Filter Banks, IEEE Int. Conference on Acoustics Speech and Signal Processing, Denver, Colorado-A.B.D., 291-294, 9-11 Nisan, 1980.
  • 3. Karaağaç M.E., Çoklu hızlı işaret işleme yöntemleriyle işaretlerin elde edilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2007.
  • 4. Vaidyanathan P.P., Multirate Systems and Filter Banks, Prentice Hall, First Edition, New Jersey, A.B.D., 1993.
  • 5. Bergen S.W.A., Antoniou A., An efficient closed-form design method for cosine modulated filter banks using window functions, Signal Process, 87 (5), 811–823, 2007.
  • 6. 6. Ogale J., Jain A., Design of an m-channel cosine modulated filter bank by new cosh window based fir filters, World Academy of Science, 48, 12-28, 2010.
  • 7. Esteban D., Galand C., Application of Quadrature Mirror Filters to Split Band Voice Coding Schemes, IEEE Int. Conference on Acoustics, Speech, and Signal Processing, Hartford-A.B.D., 191-195, 9-11 Mayıs, 1977.
  • 8. Crochiere R.E., Webber S.A., Flanagan J.L., Digital Coding of Speech in Sub-bands, IEEE Int. Conference on Acoustics, Speech, and Signal Processing, Philadelphia-A.B.D, 233-236, 12-14 Nisan, 1976.
  • 9. Jain V.K., Crochiere R.E., Quadrature mirror filter in time domain, IEEE Trans. Acoust. Speech Signal Process., 32, 353-361, 1984.
  • 10. Nussbaumer H., Pseudo qmf filter bank, IBM Tech. Discl Bull., 24, 3081-3087, 1981.
  • 11. Rothweiler J.H., Polyphase Quadrature Filters - A New Subband Coding Technique, IEEE Int. Conference on Acoustics Speech and Signal Processing, BostonA.B.D., 1280-1283, 14-16 Nisan, 1983.
  • 12. Chu P.L., Quadrature mirror filter design for an arbitrary number of equal bandwidth channels, IEEE Trans. Acoust. Speech Signal Process., 33 (1), 203-218, 1985.
  • 13. Mintzer F., Filters for distortion-free two-band multirate filter banks, IEEE Trans. Acoust. Speech Signal Process., 33, 626-630, 1985.
  • 14. Smith M.J.T., Barnwell T.P., Exact reconstruction techniques for tree-structured subband coders, IEEE Trans. Acoust. Speech Signal Process., 34, 434-441, 1986.
  • 15. Vaidyanathan P.P., Theory and design of m-channel maximally decimated quadrature mirror filters with arbitrary m, having the perfect reconstruction property, IEEE Trans. Acoust. Speech Signal Process., 35 (4), 476-492, 1987.
  • 16. Vaidyanathan P.P., Hoang P.Q., Lattice structures for optimal design and robust implementation of twochannel perfect reconstruction qmf banks, IEEE Trans. Acoust. Speech Signal Process., 36 (1), 81-93, 1988.
  • 17. Nguyen T.Q., Vaidyanathan P.P., Two-channel perfect reconstruction fir qmf structures which yield linearphase analysis and synthesis filters, IEEE Trans. Acoust. Speech Signal Process.,37 (5), 676-690, 1989.
  • 18. Nguyen T.Q., Vaidyanathan P.P., Structures for mchannel perfect-reconstruction fir qmf banks which yield linear-phase analysis filters, IEEE Trans. Acoust. Speech Signal Process., 38 (3), 433-446, 1990.
  • 19. Kurosawa K., Yamamoto K., Yamada I., A simple design method of perfect reconstruction qmf banks, IEEE Trans. Circuits Syst. II, 41, 243-245, 1994.
  • 20. Nguyen T.Q., Near-perfect-reconstruction pseudo-qmf banks, IEEE Trans. Signal Process., 42 (1), 65-76, 1994.
  • 21. Creusere C.D., Mitra S.K., A simple method for designing high-quality prototype filters for m-band pseudo qmf banks, IEEE Trans. Signal Process. 43 (4), 1005-1007, 1995.
  • 22. Lin Y.P., Vaidyanathan P.P., A kaiser window approach for the design of prototype filters of cosine modulated filter banks, IEEE Signal Process Lett., 5 (6), 132-134, 1998.
  • 23. Jain A., Saxena R., Saxena S.C., An improved and simplified design of cosine modulated pseudo-qmf filterbanks, Digital Signal Process., 16 (3), 225-232, 2006.
  • 24. Datar A., Jain A., Sharma P.C., Performance of Blackman Window Family in M Channel Cosine Modulated Filter Bank for ECG Signals, International Multimedia, Signal Processing and Communication Technologies, Aligarh-Hindistan, 98-101, 14-16 Mart, 2009.
  • 25. Avci K., Nacaroğlu A., Cosh window family and its application to fir filter design, AEU Int. J. Electron. Commun., 63(11), 907-916, 2009.
  • 26. Datar A., Jain A., Sharma P.C., Design of kaiser window based optimized prototype filter for cosine modulated filter banks, Signal Process., 90 (5), 1742-1749, 2010.
  • 27. Soni R.K., Jain A., Saxena R., Design of npr-type cosine modulated filterbank using combinational window functions, Int. J. Communications, Network and System Sciences, 3, 934-942, 2010.
  • 28. Kumar A., Singh G.K., Anand R.S., An improved closed form design method for the cosine modulated filter banks using windowing technique, Appl. Soft Comput., 11, 3209-3217, 2011.
  • 29. Singh N., Saxena R., Synthesis of qmf bank using a new window family, International Journal of Signal Processing, 4 (4), 39-50, 2011.
  • 30. Ranjeet K., Kuamr A., Pandey R.K., ECG signal compression using optimum wavelet filter bank based on kaiser window, Procedia Eng., 38, 2889-2902, 2012.
  • 31. Singh N., Saxena R., Development of new combinational window family with its application in the design of cosine modulated filter bank with better performance, International Journal of Electronics Communication and Computer Technology (IJECCT), 2 (4), 1-8, 2012.
  • 32. Datar A., Jain A., Sharma P.C., Design and performance analysis of adjustable window functions based cosine modulated filter banks, Digital Signal Process., 23, 412- 417, 2013.
  • 33. Kumar A., Singh G.K., Anurag S., An optimized cosinemodulated nonuniform filter bank design for subband coding of ecg signal, J. King Saud Univ. Eng. Sci., 27 (2), 158-169, 2013.
  • 34. Ogale J., Jain A., Design of cosine modulated filter bank using computationally efficient multiplier-less fir filters, International Journal of Engineering and Innovative Technology (IJEIT), 2 (10), 72-77, 2013.
  • 35. Soni R.K., Jain A., Saxena R., An optimized design of nonuniform filter bank using variable-combinational window function, AEU Int. J. Electron. Commun., 67, 595-601, 2013.
  • 36. Agrawal S.K., Sahu O.P., An efficient algorithm to design nearly perfect reconstruction two-channel quadrature mirror filter banks, Iranian Journal of Electrical & Electronic Engineering, 10 (4), 276-282, 2014.
  • 37. Makur A., Vijayakumar A., Theory, design and application of arbitrary order arbitrary delay filterbanks, IEEE Trans. Signal Process., 62 (18), 4811 – 4823, 2014.
  • 38. Kohli M., Mehra R., Design and simulation of two channel qmf filter bank using equiripple technique, IOSR Journal of VLSI and Signal Processing (IOSRJVSP), 23-28, 2014.
  • 39. Bindiyan T.S., Elias E., Modified metaheuristic algorithms for the optimal design of multiplier-less nonuniform channel filters, Circuits Syst. Signal Process., 33 (3), 815-837, 2014.
  • 40. Karaboğa N., Kamışlıoğlu B., A new method for quarter mirror filter bank design, Journal of the Faculty of Engineerıng and Architecture of Gazi University, 30(2), 297-307, 2015.
  • 41. Kalathil S., Elias E., Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks-a review, Journal of Signal Processing Systems, 81 (2), 183-195, 2015.
  • 42. Kalathil S., Elias E., Efficient design of non-uniform cosine modulated filter banks for digital hearing aids, AEU Int. J. Electron. Commun., 69 (9), 1314-1320, 2015.
  • 43. Kuldeep B., Kumar A., Singh G.K., Design of multichannel cosine-modulated filter bank based on fractional derivative constraints using cuckoo search algorithm, Circuits Syst. Signal Process., 34 (10), 3325- 3351, 2015.
  • 44. Kuldeep B., Singh V.K, Kumar A., Singh G.K, Design of two channel filter bank using nature inspired optimization based fractional derivative constraints, ISA Trans., 54, 101-116, 2015.
  • 45. Wei Y., Wang Y., Design of low complexity adjustable filter bank for personalized hearing aid solutions, IEEE/ACM Trans. Audio Speech Lang. Process., 23 (5), 923-931, 2015.
  • 46. Moazzen I., Agathoklis P., Design of Filterbanks Using a Fast Optimization Approach, IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS), Montevideo-Uruguay, 24-27 Şubat, 2015.
  • 47. Kumar A., Sunkaria R.K., Two-channel perfect reconstruction (PR) quadrature mirror filter (QMF) bank design using logarithmic window function and spline function, Signal, Image and Video Processing, 10 (8), 1473–1480, 2016.
  • 48. Dam H.H., Optimal design of oversampled modulated filter bank, IEEE Signal Process Lett., 24 (5), 673-677, 2017.
  • 49. Koza T., Karaboğa N., Quadrature mirror filter bank design for mitral valve doppler signal using artificial bee colony algorithm, Elektronika Ir Elektrotechnika, 1, 57- 62, 2017.
  • 50. Özdemir G., Karaboğa N., A review on the cosine modulated filter bank studies using meta-heuristic optimization algorithms, Artificial Intelligence Review, 1, 1-25, 2017.
  • 51. Sharma I., Kumar A., Singh G.K., Lee H.N., Design of multiplierless prototype filter for two-channel filter bank using hybrid method in FCSD space, IET Circuits Devices Syst., 11 (1), 29 – 40, 2017.
  • 52. Sharma I., Kumar A., Singh G.K., An efficient method for designing multiplier-less non-uniform filter bank based on hybrid method using CSE technique, Circuits Syst. Signal Process., 36 (3), 1169–1191, 2017.
  • 53. Kaiser J.F., Nonrecursive Digital Filter Design Using I0- sinh Window Function, IEEE International Symposium on Circuits and Systems (ISCAS’74), San FranciscoA.B.D., 20-23, 1974.
  • 54. Avci K., Nacaroglu A., Exponential window family, Signal & Image Processing: An International Journal (SIPIJ), 4, 1-12, 2013.
  • 55. Avci K., Nacaroğlu A., Design of nonrecursive digital filters using the exponential window, Int. J. of Advanced Electrical & Electronics Engineering, 2 (2), 308-316, 2013.
  • 56. Avci K., Gümüşsoy E., Üstel Penceresi Tabanlı MKanallı Kosinüs Modüleli Süzgeç Öbeklerinin Tasarımı, 24. IEEE Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Zonguldak-Türkiye, 16-19 Mayıs 2016.
  • 57. Koilpillai R.D., Vaidyanathan P.P., Cosine-modulated FIR filter banks satisfying perfect reconstruction, IEEE Trans. Sig. Process., 40 (4), 770-783, 1992.
  • 58. Roldan F.C., Martin P.M., Landete J.S., Velasco M.B., Saramaki T., A fast windowing-based technique exploiting spline functions for designing modulated filter banks, IEEE Trans. Circuits Syst. I. Regul. Pap., 56 (1), 168–178, 2009.
  • 59. Çetin A.E., Köymen H., Compression of Digital Biomedical Signals, The Biomedical Engineering Handbook: Medical Devices and Systems, Editör: Bonzino J.D., CRC Press, Bronzino, Boca Raton, A.B.D., 3.1-3.12, 2006.
  • 60. Blanco-Velasco M., Cruz-Roldn F., Moreno-Martnez E., Godino J.I., Barner K.E., Embedded filter bankbased algorithm for ECG compression, Signal Process., 88 (6), 1402-1412, 2008.
  • 61. Afonso V.X., Tompkins W.J., Nguyen T.Q., Luo S., ECG beat detection using filter banks, IEEE Trans. Biomed. Eng., 46 (2), 192-202, 1999.
  • 62. Massachusetts Institute of Technology. MIT-BIH Arrhythmia Database. https://physionet.org/physiobank /database/mitdb/. Erişim tarihi Ocak 15, 2018.
  • 63. Moody G.B., Mark R.G., The impact of the MIT-BIH arrhythmia database, IEEE Eng in Med and Biol, 20 (3), 45-50, May-June 2001.
  • 64. Jalaleddine S.M.S., Hutchens C.G., Strattan R.D., Coberly W.A., ECG data compression techniques - a unified approach, IEEE Trans. Biomed. Eng., 37 (4), 329-343, 1990.
  • 65. Velasco M.B., Roldan F.C., Ferreras F.L., Santos A.B., Munoz D.M. A low computational complexity algorithm for ECG signal compression, Medical Engineering and Physics, 26 (7), 553–568, 2004.
  • 66. Zigel Y., Cohen A., Katz A., The weighted diagnostic distortion (WDD) measure for ECG signal compression, IEEE Trans. Biomed. Eng. 47 (11), 1422–1430, 2000.
  • 67. Roldan F.C., Lopez P.A, Bascon S.M, Lawson S.S., An efficient and simple method for designing prototype filters for cosine-modulated pseudo-QMF banks, IEEE Signal Process. Lett. 9 (1), 132–134, 2002.
APA Avci K, Gümüşsoy Şengül E (2020). Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. , 193 - 211. 10.17341/gazimmfd.451652
Chicago Avci Kemal,Gümüşsoy Şengül Eda Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. (2020): 193 - 211. 10.17341/gazimmfd.451652
MLA Avci Kemal,Gümüşsoy Şengül Eda Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. , 2020, ss.193 - 211. 10.17341/gazimmfd.451652
AMA Avci K,Gümüşsoy Şengül E Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. . 2020; 193 - 211. 10.17341/gazimmfd.451652
Vancouver Avci K,Gümüşsoy Şengül E Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. . 2020; 193 - 211. 10.17341/gazimmfd.451652
IEEE Avci K,Gümüşsoy Şengül E "Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması." , ss.193 - 211, 2020. 10.17341/gazimmfd.451652
ISNAD Avci, Kemal - Gümüşsoy Şengül, Eda. "Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması". (2020), 193-211. https://doi.org/10.17341/gazimmfd.451652
APA Avci K, Gümüşsoy Şengül E (2020). Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 193 - 211. 10.17341/gazimmfd.451652
Chicago Avci Kemal,Gümüşsoy Şengül Eda Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no.1 (2020): 193 - 211. 10.17341/gazimmfd.451652
MLA Avci Kemal,Gümüşsoy Şengül Eda Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.35, no.1, 2020, ss.193 - 211. 10.17341/gazimmfd.451652
AMA Avci K,Gümüşsoy Şengül E Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(1): 193 - 211. 10.17341/gazimmfd.451652
Vancouver Avci K,Gümüşsoy Şengül E Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(1): 193 - 211. 10.17341/gazimmfd.451652
IEEE Avci K,Gümüşsoy Şengül E "Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35, ss.193 - 211, 2020. 10.17341/gazimmfd.451652
ISNAD Avci, Kemal - Gümüşsoy Şengül, Eda. "Üstel pencere ailesi tabanlı yeni M-kanallı kosinüs modüleli tekdüze süzgeç öbeklerinin tasarımı, analizi ve EKG altbant işleme uygulaması". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (2020), 193-211. https://doi.org/10.17341/gazimmfd.451652