Yıl: 2020 Cilt: 35 Sayı: 1 Sayfa Aralığı: 297 - 309 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.463280 İndeks Tarihi: 07-01-2021

18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi

Öz:
Bu çalışmada ikincil piller arasında yaygın olarak kullanılan ticari 18650 lityum-iyon ve 6HR61 nikel-metalhidrit pillerinin aynı hücre potansiyeli, sabit sıcaklık ve frekans aralığındaki elektrokimyasal empedansanalizi gerçekleştirilmiştir. Bu iki tekrar şarj edilebilir pilin empedans cevapları ve geliştirilen eşdeğer devremodeli ile pillerin önemli fiziksel parametreleri saptanmıştır. Elde edilen parametreler ile pillerin enerjidepolama sistemlerinde tercih edilebilirliğini önemli ölçüde belirleyen performans ve kapasite özelliklerikıyaslanmıştır. Bunun sonucunda, lityum-iyon pilinin nikel-metal hidrit piline göre birçok üstün özelliğesahip olduğu belirlenmiştir. Ayrıca, kullanılan elektrokimyasal empedans spektroskopi tekniği ile geliştirilenmodelin, enerji ihtiyacının karşılanması ve gelecekte üretilecek pillerin tasarımı için etkili olabileceği vebüyük bir potansiyele sahip olduğu ortaya konmuştur.
Anahtar Kelime:

Electrochemical impedance analysis of 18650 lithium-ion and 6HR61 nickel-metal hydride rechargeable batteries

Öz:
In this study, electrochemical impedance analysis at the same cell potential, constant temperature, and frequency range was performed for commercial 18650 lithium-ion and 6HR61 nickel-metal hydride batteries which are commonly used among secondary batteries. The significant physical parameters for batteries were determined by the impedance responses and the developed equivalent circuit model of these two rechargeable batteries. The obtained parameters were compared in terms of the performance and capacity characteristics that significantly determine the preference of batteries in energy storage systems. As a result, the lithium-ion battery has a number of superior properties over the nickel-metal hydride battery. In addition, the model developed with the electrochemical impedance spectroscopy technique has been shown to be effective and has a great potential for meeting the energy needs and design of future batteries.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ayşe Selin Kocaman, Optimization of hybrid energy systems with pumped hydro storage- A case study for Turkey, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 53-67, 2019, https://doi.or./10.17341/gazimmfd.416461
  • 2. Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review, Energ. Environ. Sci., 4 (9), 3243-3262, 2011.
  • 3. Demir, U., Aküner, M.C., Design and optimization of in-wheel asynchronous motor for electric vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1517-1530, 2018.
  • 4. Güneş, D., Tekdemir, İ.G., Karaarslan, M.Ş., Alboyacı, B., Assessment of the impact of electric vehicle charge station loads on reliability indices, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 1073-1084, 2018.
  • 5. Din, E., Schaef, C., Moffat, K., Stauth, J.T., A scalable active battery management system with embedded realtime electrochemical impedance spectroscopy, IEEE T. Power Electr., 32 (7), 5688-5698, 2017.
  • 6. Mulder, G., Omar, N., Pauwels, S., Meeus, M., Leemans, F., Verbrugge, B., De Nijs, W., Van den Bossche, P., Six, D., Van Mierlo, J., Comparison of commercial battery cells in relation to material properties, Electrochim. Acta, 87, 473-488, 2013.
  • 7. Turan, D., Yönetken, A., Enerji depolama sistemlerinin araştırılması ve analizi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 113-121, 2016.
  • 8. Zhu, W.H., Y. Zhu, B.J., Tatarchuk, Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications, Int. J. Hydrogen Energ., 39 (34), 19789-19798, 2014.
  • 9. Morimoto, K., Nagashima, I., Matsui, M., Maki, H., Mizuhata, M., Improvement of electrochemical properties and oxidation/reduction behavior of cobalt in positive electrode of Ni-metal hydride battery, J. Power Sources, 388, 45-51, 2018.
  • 10. Yan, S., Nei, J., Li, P., Young, K.H., Simon Ng, K.Y., Effects of Cs2CO3 additive in KOH electrolyte used in Ni/MH batteries, Batteries, 3 (4), 41, 2017.
  • 11. Tarabay, J., Karami, N., Nickel metal hydride battery: structure, chemical reaction, and circuit model, 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Beyrut, Lübnan, 22-26, 29 Nisan-1 Mayıs, 2015.
  • 12. Howey, D.A., Mahdi Alavi, S.M., Rechargeable Battery Energy Storage System Design, Handbook of Clean Energy Systems, Cilt 5: Energy Storage, Editör: Yan J., John Wiley & Sons, Hoboken, NJ, A.B.D., 2801-2819, 2015.
  • 13. Muenzel, V., Hollenkamp, A.F., Bhatt, A.I., de Hoog, J., Brazil, M., Thomas, D.A., Mareels, I., A comparative testing study of commercial 18650-format lithium-ion battery cells, J. Electrochem. Soc., 162 (8), A1592- A1600, 2015.
  • 14. Özçelik, E., Özkan, G., Synthesis and characterization of LiCoO2 used as cathode material in secondary lithium batteries, Journal of the Faculty of Engineering and Architecture of Gazi University, 21(3), 423-425, 2006.
  • 15. Balasundaram, M., M., Ramar, V., Yap, C., Li, L., Tay, A.A., Balaya, P., Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell, J. Power Sources, 328, 413-421, 2016.
  • 16. Sarıkurt, T., Balıkçı, A., A novel energy management system for full electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(2), 323-333, 2017.
  • 17. Piłatowicz, G., Marongiu, A., Drillkens, J., Sinhuber, P. and Sauer, D.U., A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples, J. Power Sources, 296, 365-376, 2015.
  • 18. Castano-Solis, S., Serrano-Jimenez, D., Gauchia, L. and Sanz, J. The influence of BMSs on the characterization and modeling of series and parallel Li-ion packs, Energies, 10 (3), 273, 2017.
  • 19. Zhu, Y., Zhu, W.H., Davis, Z., Tatarchuk, B.J., Simulation of Ni-MH batteries via an equivalent circuit model for energy storage applications, Advances in Physical Chemistry, 2016, 4584781, 2016.
  • 20. Robinson, J.B., Darr, J.A., Eastwood, D.S., Hinds, G., Lee, P.D., Shearing, P.R., Taiwo, O.O. and Brett, D.J., Non-uniform temperature distribution in Li-ion batteries during discharge-A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach, J. Power Sources, 252, 51-57, 2014.
  • 21. Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S. and Di Carlo, A., Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. Energ. Convers. Manage., 92, 1-9. 2015.
  • 22. Wolff, N., Harting, N., Heinrich, M., Röder, F. and Krewer, U., Nonlinear frequency response analysis on lithium-ion batteries: A model-based assessment, Electrochim. Acta, 260, 614-622, 2018.
  • 23. Barlak, C., Özkazanç, Y., Battery capacity estimation, Journal of the Faculty of Engineering and Architecture of Gazi University, 26(1), 185-191, 2011.
  • 24. Ferg, E.E., van Vuuren, F., Comparative capacity performance and electrochemical impedance spectroscopy of commercial AA alkaline primary cells, Electrochim. Acta, 128, 203-209. 2014.
  • 25. Ayşe Aslan, Ali Murat Soydan, Eda Gümüşdereli, Productions of imidazole functional SiO2 nanoparticles /nafion nanocomposite membrans for PEMFC applications, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 351-363, 2019, https://doi.or./10.17341/gazimmfd.416498
  • 26. Yang, Q., Xu, J., Cao, B., Li, X., A simplified fractional order impedance model and parameter identification method for lithium-ion batteries, Plos One, 12 (2), e0172424, 2017.
  • 27. Erol S., Electrochemical impedance spectroscopy analysis and modeling of lithium cobalt oxide/carbon batteries, Doktora Tezi, Florida Üniversitesi, Gainesville, FL, A.B.D., 2015.
  • 28. Pinson, M.B., Bazant, M.Z., Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction, J. Electrochem.Soc., 160 (2), A243-A250, 2013.
  • 29. Erol, S., Orazem, M.E., The influence of anomalous diffusion on the impedance response of LiCoO2|C batteries, J. Power Sources, 293, 57-64, 2015.
  • 30. Orazem M.E., Tribollet B., Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, NJ, A.B.D., 2017.
  • 31. Alexander, C.L., Tribollet, B., Orazem, M.E., Contribution of surface distributions to constant-phaseelement (CPE) behavior: 1. Influence of roughness, Electrochim. Acta, 173, 416-424. 2015.
  • 32. Bisquert J., Compte, A., Theory of the electrochemical impedance of anomalous diffusion, J. Electroanal. Chem., 499, 112-120, 2001.
  • 33. Osaka, T., Mukoyama, D., Nara, H., Review— Development of diagnostic process for commercially available batteries, especially lithium ion battery, by electrochemical impedance spectroscopy, J. Electrochem.Soc., 162 (14), A2529-A2537, 2015.
  • 34. Lvovich, V.F., Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, John Wiley & Sons, Hoboken, NJ, A.B.D., 2012.
  • 35. Bisquert, J., Influence of the boundaries in the impedance of porous film electrodes, Phys. Chem. Chem. Phys., 2 (18), 4185-4192, 2000.
  • 36. Linden D., Reddy T.B., Handbook of Batteries, McGraw-Hill, New York, NY, A.B.D., 2002.
APA moralı u, Erol S (2020). 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. , 297 - 309. 10.17341/gazimmfd.463280
Chicago moralı ugur,Erol Salim 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. (2020): 297 - 309. 10.17341/gazimmfd.463280
MLA moralı ugur,Erol Salim 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. , 2020, ss.297 - 309. 10.17341/gazimmfd.463280
AMA moralı u,Erol S 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. . 2020; 297 - 309. 10.17341/gazimmfd.463280
Vancouver moralı u,Erol S 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. . 2020; 297 - 309. 10.17341/gazimmfd.463280
IEEE moralı u,Erol S "18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi." , ss.297 - 309, 2020. 10.17341/gazimmfd.463280
ISNAD moralı, ugur - Erol, Salim. "18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi". (2020), 297-309. https://doi.org/10.17341/gazimmfd.463280
APA moralı u, Erol S (2020). 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 297 - 309. 10.17341/gazimmfd.463280
Chicago moralı ugur,Erol Salim 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no.1 (2020): 297 - 309. 10.17341/gazimmfd.463280
MLA moralı ugur,Erol Salim 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.35, no.1, 2020, ss.297 - 309. 10.17341/gazimmfd.463280
AMA moralı u,Erol S 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(1): 297 - 309. 10.17341/gazimmfd.463280
Vancouver moralı u,Erol S 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(1): 297 - 309. 10.17341/gazimmfd.463280
IEEE moralı u,Erol S "18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35, ss.297 - 309, 2020. 10.17341/gazimmfd.463280
ISNAD moralı, ugur - Erol, Salim. "18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (2020), 297-309. https://doi.org/10.17341/gazimmfd.463280