ALİ PAŞA HEKİMOĞLU
(Recep Tayyip Erdoğan Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, Rize, Türkiye)
Merve ÇALIŞ
(Recep Tayyip Erdoğan Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, Rize, Türkiye)
Yıl: 2020Cilt: 35Sayı: 1ISSN: 1300-1884 / 1304-4915Sayfa Aralığı: 311 - 322Türkçe

88 0
Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi
Bu çalışmada, bir adet ikili Al-25Zn alaşımı ve Al-25Zn-0,01Ti, Al-25Zn-0,03Ti, Al-25Zn-0,04Ti, Al-25Zn0,05Ti, Al-25Zn-0,075Ti, Al-25Zn-0,1Ti, Al-25Zn-0,2Ti, Al-25Zn-0,4Ti, Al-25Zn-0,6Ti, Al-25Zn-0,8Ti ve Al-25Zn-1Ti olmak üzere 11 adet üçlü alüminyum-çinko-titanyum alaşımı kokil kalıba döküm yöntemiyle üretildi. Üretilen alaşımların içyapı, mekanik ve korozyon özellikleri incelendi. İçyapı incelemeleri elektron mikroskobu (SEM) ve X-ışını kırınım (XRD) çalışmalarıyla gerçekleştirildi. Mekanik özellikler ise Brinell sertlik ölçüm yöntemi ve çekme deneyi yardımıyla belirlendi. Korozyon deneyleri elektrokimyasal test düzeneğinde ASTM G5 standardına uygun olarak gerçekleştirildi. Al-25Zn ve Al-25Zn-Ti alaşımlarının içyapılarının ana matris olarak α ve η fazlarından oluştuğu, titanyum oranının %0,01’i aşması durumunda içyapıda Al3Ti fazının çökelmeye başladığı gözlendi. Ayrıca Al-25Zn-Ti alaşımlarındaki dendrit veya tanelerin boyutunun ikili alaşıma göre çok daha küçük olduğu görüldü. Al-25Zn alaşımına %0,01 oranında yapılan titanyum katkısının sertlik, akma ve çekme mukavemeti değerlerini artırdığı bu orandan daha yüksek katkıların ise azalttığı gözlendi. Titanyum katkılarının korozyon özelliklerini olumsuz etkilediği görüldü. Farklı oranlardaki titanyum katkıları nedeniyle Al-25Zn alaşımının mekanik ve korozyon özelliklerinde meydana gelen değişimler alaşımların yapısal özelliklerine dayandırılarak açıklandı.
DergiAraştırma MakalesiErişime Açık
  • 1. Goodwin F.E. ve Ponikvar A.L., Engineering Properties of Zinc Alloys, Cilt 3, International Lead Zinc Research Organization, Research Triangle Park, NC, USA, 1989.
  • 2. Philip P.E. ve Schweitzer A., Metallic Materials: Physical, Mechanical, and Corrosion Properties, Cilt 1, Marcel Dekker Inc., USA, 2003.
  • 3. Savaşkan T. ve Hekimoğlu A.P., Microstructure and mechanical properties of Zn–15Al-based ternary and quaternary alloys, Mater. Sci. Eng., A, 603, 52–57, 2014.
  • 4. Savaşkan T. ve Alemdağ Y., Effects of pressure and sliding speed on the friction and wear properties of Al40Zn-3Cu-2Si alloy: A comparative study with SAE 65 bronze, Mater. Sci. Eng., A, 496 (1-2), 517-523, 2008.
  • 5. Savaşkan T. ve Hekimoğlu, A.P., Lubricated wear characteristics of Zn-15Al-3Cu-1Si alloy and SAE 660 bronze, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 145-154, 2018.
  • 6. Prasad B.K., Sliding wear response of a zinc-based alloy and its composite and comparison with a gray cast iron: influence of exeternal lubrication and microstructural features, Mater. Sci. Eng., A, 392, 427-439, 2005.
  • 7. Lyon R., The properties and applications of ZA alloys, The British Foundryman, August/ September, 344-349, 1986.
  • 8. Savaşkan T. ve Hekimoğlu A.P., Effects of contact pressure and sliding speed on the unlubricated friction and wear properties of Zn-15Al-3Cu-1Si alloy, Tribol. Trans., 59 (6), 1114-1121, 2016.
  • 9. Gervais E., Levert H. ve Bess M., The development of a family of zinc-based foundry alloys, American Foundrymen’s Society Transaction, 88 , 183-194, 1980.
  • 10. Delneuville P., Tribological behaviour of Zn-Al alloys (ZA27) compared with bronze when used as a bearing material with high load and very low speed, Wear, 105, 283-292, 1985.
  • 11. Savaşkan T. ve Hekimoğlu A.P., Effect of quenchageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy, , Int. J. Mater. Res., 106 (5), 481- 487, 2015.
  • 12. Savaşkan T. ve Hekimoğlu A.P., Structure and mechanical properties of Zn-(5-25) Al alloys, Int. J. Mater. Res., 105 (11), 1084-1089, 2014.
  • 13. Savaşkan T., Bican O. ve Alemdag Y., Developing aluminium–zinc-based a new alloy for tribological applications, J. Mater. Sci., 44 (8), 1969–1976, 2009.
  • 14. Türk A., Durman M. ve Kayalı E.S., The effect of manganase on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy, J. Mater. Sci., 42, 8298-8305, 2007.
  • 15. Savaşkan T. ve Bican O., Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn-40Al-2Cu-(0-5)Si alloys, Mater. Sci. Eng., A, 404, 259-269, 2005.
  • 16. Prasad B.K., Effects of silicon addition and test parameters on sliding wear characteristics of zinc-based alloy containing 37,5% aluminium, Materials Transactions, 38 (8), 701-706, 1997.
  • 17. Savaşkan T., Hekimoğlu, A.P. ve Pürçek, G., Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminiumcopper alloys, Tribol. Int., 37, 45-50, 2004.
  • 18. Savaşkan T., Pürçek G. ve Hekimoğlu A.P., Effect of copper content on the mechanical and tribological properties of ZnAl27-based alloys, Tribol. Lett., 15 (3), 257-263, 2003.
  • 19. Türk A., Durman M. ve Kayali E.S., The effect of manganese on the microstructure and mechanical properties of zinc–aluminium based ZA-8 alloy, J. Mater. Sci., 42 (19), 8298–8305, 2007.
  • 20. Savaşkan T. ve Alemdağ Y., Effect of nickel additions on the mechanical and sliding wear properties of Al40Zn-3Cu alloy, Wear, 268, 565-570, 2010.
  • 21. Chemingui M., Khitouni M., Mesmacque G. ve Kolsi A.W., Effect of heat treatment on plasticity of Al–Zn– Mg alloy: microstructure evolution and mechanical properties, Physics Procedia, 2 (3), 1167–1174, 2009.
  • 22. Shin S.S., Yeom G.Y., Kwak T.Y. ve Park I.M., Microstructure and mechanical properties of TiBcontaining Al–Zn binary alloys, J. Mater. Sci. Technol., 32 (7), 653–659, 2016.
  • 23. Hekimoğlu, A.P., Turan T.E., İsmailoğlu İ.İ., Akyol M.E. ve Şen E., Effect of grain refinement with boron on the microstructure and mechanical properties of Al30Zn alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 523-534, 2019.
  • 24. Krajewski W.K., Greer A.L., Krajewski P.K. ve Piwowarski G., Grain refinement of zinc-aluminium based foundry alloys, 71st World Foundry Congress, Bilbao-Spain, 1286-1297, 19-21 Mayıs, 2014.
  • 25. Krajewski W.K., Schumacher, P. ve Haberl K., Microstructural features of the grain-refined sand cast AlZn20 alloy, Arch. Metall. Mater., 55 (3), 2010.
  • 26. Mikuszewski T. ve Michalik R., The influence of molding parameters on the structure of the ZnAl40Cu2Ti alloy, Solid State Phenomena, 246, 235- 239, 2016.
  • 27. Krajewski W.K. ve Haberl K., The effect of Ti on highzinc al cast alloys structure and properties, Acta Metallurgica Slovaca, 17 (2), 123-128, 2011.
  • 28. Buraś J., Szucki M., Piwowarski G., Krajewski W.K. ve Krajewski P.K., Strength properties examination of high zinc aluminium alloys inoculated with Ti addition, China Foundry, 14 (3), 211–215, 2017.
  • 29. Krajewski W., The effect of Ti addition on properties of selected Zn–Al alloys, Phys. Status Solidi A, 147 (2), 389–399, 1995.
  • 30. Presnyakov A.A., Gorban Y.A. ve Chrevyakova V.V., The aluminum-zinc phase diagram, Russ. J. Phys. Chem., 35 (6), 632-633, 1961.
  • 31. Okamoto H., Schlesinger M.E. ve Mueller M.E., ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, Materials Park OH, ABD, 2016.
  • 32. Maxweel I. ve Hellawell A., Simple model for grain refinement during solidification, Acta Metall., 23 (2), 229-237, 1975.
  • 33. Chen Z., Wang T., Gao L., Fu H. ve Li. T., Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al–B master alloy, Mater. Sci. Eng., A, 553, 32– 36, 2012.
  • 34. Chen Z., Kang H., Fan G., Li J., Lu Y., Jie J., Zhang Y., Li T., Jian X. ve Wang T., Grain refinement of hypoeutectic Al-Si alloys with B, Acta Metall., 120, 168-178, 2016.
  • 35. Johnsson M.ve Backerud L., The influence of composition on equiaxed crystal growth mechanisms and grain size in Al alloys, Zeitschrift für Metallkunde, 87, 216-220, 1996.
  • 36. Spittle J.A ve Sadli S., Effect of alloy variables on grain refinement of binary aluminum-alloys with Al-Ti-B, Mater. Sci. Technol., 11, 533-537, 1995.
  • 37. Dieter G.E., Mechanical Metallurgy, McGraw-Hill Book Company, New York, USA, 1976.
  • 38. Turhal M.Ş. ve Savaşkan T., Relationships between secondary dendrite arm spacing and mechanical properties of Zn-40Al-Cu alloys, J. Mater. Sci., 38 (12), 2639-2646, 2013.
  • 39. Çolak M. ve Kayıkçı R., Alüminyum dökümlerinde tane inceltme, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (1), 11-17, 2009.
  • 40. Alipour M., Azarbarmas M., Heydari F., Hoghoughi M., Alidoost M. ve Emamy M., The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy, Mater. Des., 38, 64–73, 2012.
  • 41. Savaşkan T., Malzeme Bilimi ve Malzeme Muayenesi, 8. Baskı, Papatya Bilim, İstanbul, 2017.
  • 42. Üneri S., Korozyon ve Önlenmesi, 3. Baskı, Korozyon Derneği, Ankara, 2011.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.