Yıl: 2020 Cilt: 35 Sayı: 3 Sayfa Aralığı: 1589 - 1601 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.645284 İndeks Tarihi: 13-01-2021

Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini

Öz:
Bu çalışma, yüksek sıcaklıkta ani termal işlem ile indirgenmiş grafen oksitin (T-rGO) sentezi, SEM, XRD,Raman, FTIR, EDX teknikleriyle karakterizasyon analizi ve elektrokimyasal karakterizasyonu hakkındadır.T-rGO ve Nafion çözeltisi (N117) ile kaplanmış camsı karbon elektrot (GCE) doğrudan fosfat tamponçözeltisi (PBS) içerisindeki askorbik asit (AA) varlığının algılanması için kullanılmıştır. Modifiye GCE’ninelektrokimyasal davranışının değerlendirilmesi için dönüşümlü voltametri (CV), diferansiyel puls voltametri(DPV) ve amperometrik tekniklerden yararlanılmıştır. Bu amaçla başlangıç malzemesi olan sentetik grafittenmodifiye Hummers yöntemi ile grafen oksit (GO) sentezlenmiştir. Ardından T-rGO, GO’nun inert gazortamında ve yüksek sıcaklıkta ani termal işlem uygulanarak indirgenmesi ile elde edilmiştir. XRD analizverileri kullanılarak yaklaşık 3,32 tabaka sayısına sahip T-rGO sentezlendiği tespit edilmiştir. 5,0 mM AAiçeren farklı pH değerlerine sahip (6, 7 ve 8) fosfat tampon çözeltileri (PBS) arasından pH değeri 8 olançözeltide GCE/T-rGO elektrotu için en belirgin ve yüksek akıma sahip anodik yükseltgenme pikigözlenmiştir. Elde edilen sonuçlara göre hazırlanan GCE/T-rGO elektrotu, AA için yeniden üretilebilirlik(RSD=%6,25, n=3) ve tekrarlanabilirlikle (RSD=%2,14, n=3), yüksek hassasiyete (0,3 μA mM-1) ve tayinlimitine (0,61 μM) sahiptir. Ayrıca, GCE/T-rGO elektrot ürik asit, dopamin, KCl, NaCl ve CaCl2’e karşıyüksek seçicilik sergilemiştir. Bu nedenlerle, hazırlanan GCE/T-rGO elektrotların AA molekülününelektrokimyasal tayininde kullanılabileceği düşünülmektedir.
Anahtar Kelime:

Electrochemical determination of ascorbic acid with thermally reduced graphene oxide

Öz:
The present work, describe the synthesis of thermally reduced graphene oxide (T-rGO) with high temperature flash heat treatment and its characterization by SEM, XRD, Raman, FTIR, EDX and electrochemistry. The T-rGO and Nafion solution (N117) modified glassy carbon electrode (GCE) was directly used for electrochemical sensing of ascorbic acid (AA) in the phosphate buffer solution (PBS). Electrochemical behavior of the modified GCE was identified by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometric techniques. For this purpose, graphene oxide (GO) was synthesized from the synthetic graphite as starting material using by the modified Hummers method. Then, T-rGO was obtained by reducing GO by applying flash and high temperature thermal treatment in an inert gas environment. It was determined that the number of layer is about 3.32 for T-rGO according to XRD analysis. In the PBS with different pH values (6, 7 and 8) containing 5.0 mM AA, the most prominent anodic oxidation peak with high current density was observed for the GCE/T-rGO electrode when the electrolyte pH value was 8. According to the results, the prepared GCE/T-rGO electrode exhibited good sensitivity (0.3 μA mM-1) and low detection limit (0.61 μM) of AA with good reproducibility (RSD=6.25%, n=3) and repeatability (RSD=2.14%, n=3). In addition, the GCE/T-rGO electrode showed good selectivity against the uric acid, dopamine, KCl, NaCl and CaCl2. For these reasons, it is thought that the GCE/T-rGO electrodes can be used for electrochemical determination of AA molecule.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Novoselov K.S., Geim A.K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A.A., Electric field effect in atomically thin carbon films, Science, 306, 666-669, 2004.
  • 2. Chee W.K., Lim H.N., Huang N.M., Harrison I., Nanocomposites of graphene/polymers: a review, RSC Adv., 5, 68014-68051, 2015.
  • 3. Shams S.S., Zhang R., Zhu J., Graphene synthesis: a review, Mater. Sci. Pol., 33 (3), 566-578, 2015.
  • 4. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22 (35), 3906- 3924, 2010.
  • 5. Johra F.T., Lee J.W., Jung W.G., Facile and safe graphene preparation on solution based platform, J. Ind. Eng. Chem. 20, 2883-2887, 2014.
  • 6. Singh R.K., Kumar R., Singh D.P., Graphene oxide: strategies for synthesis, reduction and frontier applications, RSC Adv., 6, 64993-65011, 2016.
  • 7. Brodie B.C., Sur le poids atomique du graphite, Ann. Chim. Phys., 59, 466-472, 1860.
  • 8. Staudenmaier L., Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges., 31 (2), 1481- 1487, 1898.
  • 9. Hofmann U., König E., Untersuchungen über graphitoxyd, Z. Anorg. Allg. Chem., 234, 311-336, 1937.
  • 10. Hummers W.S., Offeman R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339, 1958.
  • 11. Ha H.W., Choudhury A., Kamal T., Kim D.H., Park S.Y., Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites, ACS Appl. Mater. Interfaces, 4 (9), 4623-4630, 2012.
  • 12. Chang K.C., Lu H.I., Lai M.C., Hsu C.H., Hsiao Y.R., Huang K.Y., Chuang T.L., Yeh J.M., Liu W.R., Enhancement of physical properties of electroactive polyimide nanocomposites by addition of graphene nanosheets, Polym. Int., 63, 1011-1017, 2014.
  • 13. Voiry D., Yang J., Kupferberg J., Fullon R., Lee C., Jeong H.Y., Shin H.S., Chhowalla M., High-quality graphene via microwave reduction of solutionexfoliated graphene oxide, Science, 353 (6306), 1413- 1416, 2016.
  • 14. Duy L.T., Kalanur S.S., Cho I.S., Seo H., Rapid photocatalytic reduction of graphene oxide indirectly activated by the domino effect of ethanol oxidation on a titanium dioxide film, Mater. Chem. Phys., 218, 289- 295, 2018.
  • 15. Kim S., Choi K., Park S., Solvothermal reduction of graphene oxide in dimethylformamide, Solid State Sci., 61, 40-43, 2016.
  • 16. Zhu C., Zhai J., Wen D., Dong S., Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage, J. Mater. Chem., 22, 6300-6306, 2012.
  • 17. Phong N.H., Toan T.T.T., Tinh M.X., Tuyen T.N., Mau T.X., Khieu D.Q., Simultaneous voltammetric determination of ascorbic acid, paracetamol, and caffeine using electrochemically reduced graphene oxide modified electrode, J. Nanomater., 5348016, 1-15, 2018.
  • 18. Liao W., Guo C., Sun L., Li Z., Tian L., He J., Li J., Zheng J., Ma Z., Luo Z., Chen C., The electrochemical behavior of nafion/reduced graphene oxide modified carbon electrode surface and its application to ascorbic acid determination, Int. J. Electrochem. Sci., 10, 5747- 5755, 2015.
  • 19. Malathi M., Violet Dhayabaran V., Highly sensitive determination of chromium (VI) based on reduced graphene oxide / polyaniline - nafion composite modified electrode, Der Pharma Chem., 8 (19), 49-56, 2016.
  • 20. Yang L., Liu D., Huang J., You T., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode, Sensors Actuators, B Chem., 193, 166-172, 2014.
  • 21. Sun C.L., Lee H.H., Yang J.M., Wu C.C., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites, Biosens. Bioelectron., 26, 3450-3455, 2011.
  • 22. Das G., Yoon H.H., Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite, Int. J. Nanomedicine., 10, 55-66, 2015.
  • 23. Lv Y., Wang F., Zhu H., Zou X., Tao C.A., Wang J., Electrochemically reduced graphene oxide-nafion/Au nanoparticle modified electrode for hydrogen peroxide sensing, Nanomater. Nanotechnol., 6 (30), 1-7, 2016.
  • 24. Heli H., Sattarahmady N., Amperometric determination of ascorbic acid in pharmaceutical formulations by a reduced graphene oxide-cobalt hexacyanoferrate nanocomposite, Iran. J. Pharm. Res., 14 (2), 453-463, 2015.
  • 25. Zhu Q., Bao J., Huo D., Yang M., Hou C., Guo J., Chen M., Fa H., Luo X., Ma Y., 3D Graphene hydrogel - gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sensors Actuators, B Chem., 238, 1316-1323, 2017.
  • 26. Chen K., Zhang Z.L., Liang Y.M., Liu W., A graphenebased electrochemical sensor for rapid determination of phenols in water, Sensors, 13, 6204-6216, 2013.
  • 27. Xue R., Kang T.F., Lu L.P., Cheng S.Y., Electrochemical sensor based on the graphene-nafion matrix for sensitive determination of organophosphorus pesticides, Anal. Lett., 46, 131-141, 2013.
  • 28. Sun F., Fan G., Development of a nafion-graphene nanocomposite for sensitive electrochemical determination of cadmium(II) ions, Int. J. Electrochem. Sci., 12, 8167-8176, 2017.
  • 29. Pakrieva E., Oskina Y., Ustinova E., Determination of platinum in mineral raw materials by switching chronoamperometry, IOP Conf. Ser. Earth Environ. Sci., 21, 1-5, 2014.
  • 30. Han D., Han T., Shan C., Ivaska A., Niu L., Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis., 22 (17-18), 2001-2008, 2010.
  • 31. Lee C.S., Yu S., Kim T., One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid, Nanomaterials., 8 (17), 1-13, 2018.
  • 32. Çiftçi H., Alver E., Çelik F., Metin A.Ü., Tamer U., Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid, Microchim. Acta., 183, 1479-1486, 2016.
  • 33. Asan G., Çelikkan H., Electrochemical analysis of ascorbic acid with MoS2 based electrode, Journal of the Faculty of Engineering and Architecture of Gazi University, 32, 617-625, 2017.
  • 34. Marcano D.C., Kosynkin D. V, Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M., Improved synthesis of graphene oxide, ACS Nano., 4 (8), 4806-4814, 2010.
  • 35. Hassan F.M., Batmaz R., Li J., Wang X., Xiao X., Yu A., Chen Z., Evidence of covalent synergy in siliconsulfur-graphene yielding highly efficient and long-life lithium-ion batteries, Nat. Commun., 6 (8597), 1-11, 2015.
  • 36. Dimiev A.M., Tour J.M., Mechanism of graphene oxide formation, ACS Nano., 8 (3), 3060-3068, 2014.
  • 37. Pei S., Cheng H.M., The reduction of graphene oxide, Carbon, 50, 3210-3228, 2012.
  • 38. Mokhtar M., Enein SA.A.E., Hassaan MY., Morsy MS., Khalil MH., Thermally reduced graphene oxide : synthesis, structural and electrical properties, Int J Nanoparticles Nanotech., 3 (8), 1-9, 2017.
  • 39. Yazıcı M., Tiyek İ., Ersoy M.S., Alma M.H., Dönmez U., Yıldırım B., Salan T., Karataş Ş., Uruş S., Karteri İ., Yıldız K., Modifiye hummers yöntemiyle grafen oksit (GO) sentezi ve karakterizasyonu, GU J Sci Part C, 4 (2), 41-48, 2016.
  • 40. Loryuenyong V., Totepvimarn K., Eimburanapravat P., Boonchompoo W., Buasri A., Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods, Adv. Mater. Sci. Eng., 2013, 1–5, 2013.
  • 41. Boran F., Çetı̇nkaya Gürer S., The effect of starting material types on the structure of graphene oxide and graphene, Turkish J. Chem. 43, 1322-1335, 2019.
  • 42. Yang Y., Qi S., Wang J., Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization, J. Alloys Compd., 520, 114-121, 2012.
  • 43. Liu X., Wu Y., Yang Z., Pan F., Zhong X., Wang J., Gu L., Yu Y., Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries, J. Power Sources, 293, 799-805, 2015.
  • 44. Pan S., Liu X., ZnS-Graphene nanocomposite: synthesis, characterization and optical properties, J. Solid State Chem., 191, 51-56, 2012.
  • 45. Zhao B., Zhang G., Song J., Jiang Y., Zhuang H., Liu P., Fang T., Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity, Electrochim. Acta, 56, 7340-7346, 2011.
  • 46. Chen G., Weng W., Wu D., Wu C., Lu J., Wang P., Chen X., Preparation and characterization of graphite nanosheets from ultrasonic powdering technique, Carbon, 42, 753-759, 2004.
  • 47. Ansón-Casaos A., Puértolas J.A., Pascual F.J., Hernández-Ferrer J., Castell P., Benito A.M., Maser W.K., Martínez M.T., The effect of gamma-irradiation on few-layered graphene materials, Appl. Surf. Sci., 301, 264-272, 2014.
  • 48. Ferrari A.C., Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47- 57, 2007.
  • 49. Çelik Y., Flahaut E., Suvacı E., A comparative study on few-layer graphene production by exfoliation of different starting materials in a low boiling point solvent, Flat Chem., 1, 74-88, 2017.
  • 50. Jankovský O., Marvan P., Nováček M., Luxa J., Mazánek V., Klímová K., Sedmidubský D., Sofer Z., Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties, Appl. Mater. Today., 4, 45-53, 2016.
  • 51. Şimşek B., Dilmac Ö.F., Main effects analysis of graphene grown by chemical vapor deposition using orthogonal arrays, Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 649-663, 2018.
  • 52. Huang S.Y., Zhao B., Zhang K., Yuen M.M.F., Xu J.B., Fu X.Z., Sun R., Wong C.P., Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity, Sci. Rep., 5 (14260), 1-11, 2015.
  • 53. Oliveira A.E.F., Braga G.B., Tarley C.R.T., Pereira A.C., Thermally reduced graphene oxide: synthesis, studies and characterization, J. Mater. Sci., 53, 12005- 12015, 2018.
  • 54. Zhao D., Yu G., Tian K., Xu C., A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 82, 119-126, 2016.
  • 55. Qi S., Zhao B., Tang H., Jiang X., Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene, Electrochim. Acta, 161, 395-402, 2015.
  • 56. Kim Y.R., Bong S., Kang Y.J., Yang Y., Mahajan R.K., Kim J.S., Kim H., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosens. Bioelectron., 25, 2366-2369, 2010.
  • 57. Tsierkezos N.G., Othman S.H., Ritter U., Hafermann L., Knauer A., Köhler J.M., Downing C., McCarthy E.K., Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes, Sensors Actuators, B Chem., 231, 218-229, 2016.
  • 58. Raj M.A., John S.A., Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode, Anal. Chim. Acta., 771, 14-20, 2013.
  • 59. Guo H.L., Wang X.F., Qian Q.Y., Wang F.B., Xia X.H., A green approach to the synthesis of graphene nanosheets, ACS Nano, 3 (9), 2653-2659, 2009.
  • 60. Wang Y., Li Y., Tang L., Lu J., Li J., Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun., 11, 889-892, 2009.
  • 61. Becerril H.A., Mao J., Liu Z., Stoltenberg R.M., Bao Z., Chen Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2 (3), 463-470, 2008.
  • 62. Wang X., Zhi L., Müllen K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 8 (1), 323-327, 2008.
  • 63. Sengupta I., Chakraborty S., Talukdar M., Pal S.K., Chakraborty S., Thermal reduction of graphene oxide: how temperature influences purity, J. Mater. Res., 33 (23), 4113-4122, 2018.
  • 64. Taverniers I., De Loose M., Van Bockstaele E., Trends in quality in the analytical laboratory. II. analytical method validation and quality assurance, Trends Anal. Chem., 23 (8), 535-552, 2004.
  • 65. Çoğal S., Grafen oksit-polianilin nanokompozit temelli amperometrik glukoz biyosensörü geliştirilmesi, Akad. Gıda. 15 (2), 124-129, 2017.
  • 66. Wu G.H., Wu Y.F., Liu X.W., Rong M.C., Chen X.M., Chen X., An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide, Anal. Chim. Acta, 745, 33-37, 2012.
  • 67. Du J., Yue R., Ren F., Yao Z., Jiang F., Yang P., Du Y., Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 53, 220-224, 2014.
APA Okutan M (2020). Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. , 1589 - 1601. 10.17341/gazimmfd.645284
Chicago Okutan Merve Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. (2020): 1589 - 1601. 10.17341/gazimmfd.645284
MLA Okutan Merve Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. , 2020, ss.1589 - 1601. 10.17341/gazimmfd.645284
AMA Okutan M Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. . 2020; 1589 - 1601. 10.17341/gazimmfd.645284
Vancouver Okutan M Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. . 2020; 1589 - 1601. 10.17341/gazimmfd.645284
IEEE Okutan M "Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini." , ss.1589 - 1601, 2020. 10.17341/gazimmfd.645284
ISNAD Okutan, Merve. "Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini". (2020), 1589-1601. https://doi.org/10.17341/gazimmfd.645284
APA Okutan M (2020). Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1589 - 1601. 10.17341/gazimmfd.645284
Chicago Okutan Merve Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no.3 (2020): 1589 - 1601. 10.17341/gazimmfd.645284
MLA Okutan Merve Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.35, no.3, 2020, ss.1589 - 1601. 10.17341/gazimmfd.645284
AMA Okutan M Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(3): 1589 - 1601. 10.17341/gazimmfd.645284
Vancouver Okutan M Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(3): 1589 - 1601. 10.17341/gazimmfd.645284
IEEE Okutan M "Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35, ss.1589 - 1601, 2020. 10.17341/gazimmfd.645284
ISNAD Okutan, Merve. "Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (2020), 1589-1601. https://doi.org/10.17341/gazimmfd.645284