Yıl: 2020 Cilt: 35 Sayı: 3 Sayfa Aralığı: 1647 - 1664 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.544678 İndeks Tarihi: 13-01-2021

Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı

Öz:
Bursa ili kentsel atıksu arıtma tesislerinde oluşan arıtma çamurları, 2017 yılından itibaren Bursa Su veKanalizasyon İdaresi’ne bağlı 400 ton/gün kapasiteli bir akışkan yataklı yakma tesisinde yakılarak bertarafedilmektedir. Yakma sürecinin sonunda her ay bertaraf edilmeyi bekleyen ortalama 615 ton küloluşmaktadır. Bu çalışmanın amacı çamur yakma sürecinin sonunda oluşan atık çamur küllerinin yapımalzemesi olarak geri kazanılıp kazanılamayacağını araştırmaktır. Bu amaçla çamur küllerinestabilizasyon/solidifikasyon (S/S) ve jeopolimerizasyon teknolojileri uygulanmıştır. Bağlayıcı malzemeolarak Portland çimentosu, termik santral uçucu külü ve mermer çamuru kullanılmıştır. S/S örnekleri su,jeopolimer örnekleri 8MNaOH ve NaSilNaOH çözeltileriyle aktive edilmiştir. Hazırlanan pasta örnekleri 28günlük hava kürü sonunda basınç dayanımı ve ağır metal sızma testlerine tabi tutulmuştur. Çamur külükullanılarak hazırlanan S/S örneklerinde 21,8 MPa, jeopolimer örneklerinde ise 50,0 MPa düzeylerine ulaşanbasınç dayanım değerleri elde edilmiştir. Atık çamur külü içeren bazı örneklerin basınç dayanımdüzeylerinin, atık içermeyen kontrol örneklerinin basınç dayanım düzeylerinden yüksek olması dikkatçekmiştir. Sızma testi sonucunda çamur külüyle hazırlanan örneklerin tehlike sınır değerlerinin oldukçaaltında kaldığı görülmüştür. Gerek sızma testi gerekse basınç dayanım testi sonuçları, çamur küllerinin, yapımalzemesi olarak değerlendirilmesi gereken bir potansiyel vadettiğini göstermektedir.
Anahtar Kelime:

Recycling of sewage sludge incineration ashes as construction material

Öz:
Sewage sludges that are originating from the municipal wastewater treatment plants of Bursa city have been incinerated with a fluidized bed reactor of 400 tons/day capacity since 2017. Each month, on an average, 615 tons of ash is generated as a waste of the incineration process, which needs disposal. The purpose of this study was to investigate if the sludge incinerator ash can be recycled as a construction material. Stabilization/solidification (S/S) and geopolymerization technologies were applied to the sludge ash with this aim. Portland cement, fly ash from a coal-fired power plant, and marble sludge were used as binders. S/S samples were activated with water, while geopolymer samples were activated with 8MNaOH and NaSilNaOH solutions. The prepared paste samples were air-cured for 28 days and analyzed for compressive strength and heavy metals leaching. S/S samples containing sludge ash yielded a compressive strength level of 21.8 MPa, while geopolymer samples resulted in a compressive strength level of 50.0 MPa. Higher compressive strength levels of several samples containing waste sludge ash than that of the control samples without waste were noticed. Leaching tests showed that heavy metals leaching from the samples prepared with sludge ash were much lower than the legal limit values for toxicity. Both leaching tests and compressive strength tests showed that sludge ash has the potential to be considered as a construction material.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Cieslik B.M., Namiesnik J., Konieczka P., Review of sewage sludge management: standards, regulations and analytical methods, Journal of Cleaner Production, 90, 1-15, 2015.
  • 2. Kacprzak M., Neczaj E., Fijalkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almas A., Singh B.R., Sewage sludge disposal strategies for sustainable development, Environmental Research, 156, 39-46, 2017.
  • 3. EC, European Commission Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land, Final Report, Part I <http://ec. beuropa. eu/environment/waste/sludge/pdf/part_i_report.pdf>. 2008.
  • 4. Malerius O.,Werther J., Modeling the adsorption of mercury in the flue gas of sewage sludge incineration, Chemical Engineering Journal, 96, 197-205, 2003.
  • 5. Lundin M., Olofsson M., Pettersson G.J., Zetterlund H., Environmental and economic assessment of sewage sludge handling options, Resources Conservation and Recycling, 41, 255-278, 2004.
  • 6. Fytili D., Zabaniotou A., Utilization of sewage sludge in EU application of old and new methods - A review, Renewable & Sustainable Energy Reviews, 12, 116- 140, 2008.
  • 7. Samolada M.C., Zabaniotou A.A., Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-toenergy management in Greece, Waste Management, 34, 411-420, 2014.
  • 8. Donatello S., Cheeseman C.R., Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review, Waste Management, 33, 2328-2340, 2013.
  • 9. Lin K.L., Chiang K.Y., Lin D.F., Effect of heating temperature on the sintering characteristics of sewage sludge ash, Journal of Hazardous Materials, 128, 175- 181, 2006.
  • 10. Merino I., Arevalo L.F., Romero F., Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives, Waste Management, 27, 1829-1844, 2007.
  • 11. Mardani-Aghabaglou A., Yuksel C., Beglarigale A., Ramyar K., Improving the mechanical and durability performance of recycled concrete aggregate-bearing mortar mixtures by using binary and ternary cementitious systems, Construction and Building Materials, 196, 295-306, 2019.
  • 12. Nematzadeh A., Geven E., Özen S., İlhan M., MardaniAghabaglou A., Effect of Different Permeability Reducing Admixture on Flow Ability Performance of Different Type of Mineral Admixture-Containing Mortar Mixtures, Sigma Journal of Engineering and Natural Sciences, 37, 625-640, 2019.
  • 13. Brotons F.B., Garces P., Paya J, Saval J.M., Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks, Journal of Cleaner Production, 82, 112-124, 2014.
  • 14. Krejcirikovaa B., Ottosena L.M., Kirkelunda G.M., Rodea C., Peuhkuri R., Characterization of sewage sludge ash and its effect on moisture physics of mortar, Journal of Building Engineering, 21, 396–403, 2019.
  • 15. Li J.S, Guo M.Z., Xue Q., Poon C.S., Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars, Journal of Cleaner Production, 152, 142-149, 2017.
  • 16. Galiano Y.L., Pereira C.F., Vale J., Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers, Journal of Hazardous Materials, 185, 373-381, 2011.
  • 17. Fijalkowski K., Rorat A., Grobelak A., Kacprzak M.J., The presence of contaminations in sewage sludge - The current situation, Journal of Environmental Management, 203, 1126-1136, 2017.
  • 18. Barth E. F., An Overview of the History, Present Status, and Future-Direction of Solidification Stabilization Technologies for Hazardous-Waste Treatment, Journal of Hazardous Materials, 24, 103-109, 1990.
  • 19. Van Jaarsveld J.G., Van Deventer J.S., The effect of metal contaminants on the formation and properties of waste-based geopolymers, Critical Reviews in Environmental Science and Technology, 29, 1189-1200, 1999.
  • 20. Davidovits J., Geopolymers - Inorganic polymeric new materials, Journal of Thermal Analysis 37, 1633-1656, 1991.
  • 21. ASTM standard C618-12a, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA., 2012.
  • 22. Singh M., Choudhary K., Srivastava A., Sangwan K.S., Bhunia D., A study on environmental and economic impacts of using waste marble powder in concrete, Journal of Building Engineering, 13, 87-95, 2017.
  • 23. Aruntas H.Y., Guru M., Dayi M., Tekin I., Utilization of waste marble dust as an additive in cement production, Materials & Design, 31, 4039-4042, 2010.
  • 24. Corinaldesi V., Moriconi G., Naik T.R., Characterization of marble powder for its use in mortar and concrete, Construction and Building Materials, 24, 113-117, 2010.
  • 25. Ergun A., Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete, Construction and Building Materials, 25, 806-812, 2011.
  • 26. Salihoglu N.K., Salihoglu G., Marble Sludge Recycling by Using Geopolymerization Technology, Journal of Hazardous, Toxic, and Radioactive Waste, 22(4), 04018019-1 – 04018019-7, 2018.
  • 27. ASTM standard C204-11, 2011. Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International, West Conshohocken, PA., 2011.
  • 28. Burciaga-Diaz O., Escalante-Garcia J.I., Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures, Cement & Concrete Composites, 84, 157-166, 2017.
  • 29. Yaseri S., Hajiaghaei G., Mohammadi F., Mandikhani M., Farokhzad R., The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste, Construction and Building Materials, 157, 534-545, 2017.
  • 30. TS EN 12457-2, Atıkların nitelendirilmesi - Katıdan özütleme analizi- Granül katı atıkların ve çamurların katı özütlemesi için uygunluk deneyi, Türk Standardı, Kabul Tarihi: 28.01.2004, Yararlanılan Kaynak: EN 12457-2:2002, 29 p., 2004.
  • 31. EPA, TCLP 1311, Toxicity Characteristics Leaching Procedure, Environmental Protection Agency, p. 35 p., 1992.
  • 32. ADDDY, Atıkların Düzenli Depolanmasına Dair Yönetmelik, Resmi Gazete Tarihi: 26.03.2010 Resmi Gazete Sayısı: 27533, p. 27 s., 2010.
  • 33. Chen C. H., Chiou I. J.,Wang K. S., Sintering effect on cement bonded sewage sludge ash, Cement & Concrete Composites, 28, 26-32, 2006.
  • 34. Chen Z., Li J.S., Poon C.S., Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks, Journal of Cleaner Production, 171, 1447-1459, 2018.
  • 35. Lynn J., Dhir R.K., Ghataora G.S., West R.P., Sewage sludge ash characteristics and potential for use in concrete, Construction and Building Materials, 98, 767– 779, 2015.
  • 36. Mahieux P.Y., Aubert J.E., Cyr M., Coutand M., Husson B., Quantitative mineralogical composition of complex mineral wastes - Contribution of the Rietveld method, Waste Management, 30, 378-388, 2010.
  • 37. Pourkhorshidi A.R., Najimi M., Parhizkar T., Jafarpour F., Hillemeier B., Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans, Cement & Concrete Composites, 32, 794- 800, 2010.
  • 38. EN197-1:2011, Cement - Part 1: Composition, specifications and conformity criteria for common cements, European Standard 2011.
  • 39. EN450-1:2012, Fly ash for concrete. Definition, specifications and conformity criteria, European Standard, 2012.
  • 40. Mehta P.K., Monteiro P.J.M., Concrete: Microstructure, Properties and Materials, 3th ed. McGraw Hill, USA., 2010.
  • 41. Xu H., Zhao Y. X., Cui L., Xu B., Sulphate attack resistance of high-performance concrete under compressive loading, Journal of Zhejiang UniversityScience A, 14, 459-468, 2013.
  • 42. Kalina R.D., Al-Shmaisani S., Ferron R.D., Juenger M.C.G., False Positives in ASTM C618 Specifications for Natural Pozzolans, ACI Materials Journal, 116, 165- 172, 2019.
  • 43. EPA, United States Environmental Protection Agency, Standard Operating Procedure for TCLP Extraction 1311 and SPLP Extraction 1312, Revision 9, 2008.
  • 44. Fernández-Jiménez A.M., Palomo A., LopezHombrados C., Engineering Properties of AlkaliActivated Fly Ash Concrete, ACI Materials Journal, 103, 106-112, 2006.
  • 45. Morsy M.S., Alsayed S.H., Al-Salloum Y., Almusallam T., Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder, Arabian Journal for Science and Engineering, 39, 4333–4339, 2014.
  • 46. Dorum A., Koçak Y., Yılmaz B., Uçar A., The effect of electrokinetic spesification features to hydration development in fly ash blended cement, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (3), 449-457, 2010.
  • 47. Yıldız K., Dorum A., Koçak Y., The investigation of the effect of minerological molecular electrokinetical and thermal compliance of pumice, zeolite and CEM 1 cement on high strength concrete, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (4), 867-879, 2010.
  • 48. Dassekpo J.B.M., Zha X., Zhan J., Compressive strength performance of geopolymer paste derived from Completely Decomposed Granite (CDG) and partial fly ash replacement, Construction and Building Materials, 138, 195-203, 2017.
  • 49. Dayi M., Aruntas H.Y., Cavus M., Simsek O., Investigation of usability of zeolite, fly ash and waste glass materials in portland composite cement production, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (3), 491-499, 2013.
  • 50. ASTM standard C109/C109M-07, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken, PA. 2007.
  • 51. Duxson P., Fernandez-Jimenez A., Provis J.L., Lukey G.C., Palomo A., Van Deventer J.S.J., Geopolymer technology: the current state of the art, Journal of Materials Science, 42, 2917–2933, 2007.
  • 52. Barbosa V.F.F., MacKenzie K.J.D.,Thaumaturgo C., Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, International Journal of Inorganic Materials, 2, 309-317, 2000.
  • 53. Granizo M.L., Alonso S., Blanco-Varela M.T., Palomo A., Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction, Journal of the American Ceramic Society, 85, 225-231, 2002.
  • 54. Alonso S., Palomo A., Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures, Cement and Concrete Research, 31, 25-30, 2001.
  • 55. Chen M.Z., Denise B., Mathieu G., Jacques M., Remy G., Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction, Waste Management, 33, 1268-1275, 2013.
  • 56. Benhelal E., Zahedi G., Shamsaei E., Bahadori A., Global strategies and potentials to curb CO2 emissions in cement industry, Journal of Cleaner Production, 51, 142-161, 2013.
APA Yigit B, SALIHOGLU G, Mardani A, Salihoglu N, Özen S (2020). Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. , 1647 - 1664. 10.17341/gazimmfd.544678
Chicago Yigit Berna,SALIHOGLU GÜRAY,Mardani Ali,Salihoglu Nezih Kamil,Özen Süleyman Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. (2020): 1647 - 1664. 10.17341/gazimmfd.544678
MLA Yigit Berna,SALIHOGLU GÜRAY,Mardani Ali,Salihoglu Nezih Kamil,Özen Süleyman Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. , 2020, ss.1647 - 1664. 10.17341/gazimmfd.544678
AMA Yigit B,SALIHOGLU G,Mardani A,Salihoglu N,Özen S Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. . 2020; 1647 - 1664. 10.17341/gazimmfd.544678
Vancouver Yigit B,SALIHOGLU G,Mardani A,Salihoglu N,Özen S Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. . 2020; 1647 - 1664. 10.17341/gazimmfd.544678
IEEE Yigit B,SALIHOGLU G,Mardani A,Salihoglu N,Özen S "Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı." , ss.1647 - 1664, 2020. 10.17341/gazimmfd.544678
ISNAD Yigit, Berna vd. "Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı". (2020), 1647-1664. https://doi.org/10.17341/gazimmfd.544678
APA Yigit B, SALIHOGLU G, Mardani A, Salihoglu N, Özen S (2020). Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1647 - 1664. 10.17341/gazimmfd.544678
Chicago Yigit Berna,SALIHOGLU GÜRAY,Mardani Ali,Salihoglu Nezih Kamil,Özen Süleyman Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no.3 (2020): 1647 - 1664. 10.17341/gazimmfd.544678
MLA Yigit Berna,SALIHOGLU GÜRAY,Mardani Ali,Salihoglu Nezih Kamil,Özen Süleyman Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.35, no.3, 2020, ss.1647 - 1664. 10.17341/gazimmfd.544678
AMA Yigit B,SALIHOGLU G,Mardani A,Salihoglu N,Özen S Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(3): 1647 - 1664. 10.17341/gazimmfd.544678
Vancouver Yigit B,SALIHOGLU G,Mardani A,Salihoglu N,Özen S Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(3): 1647 - 1664. 10.17341/gazimmfd.544678
IEEE Yigit B,SALIHOGLU G,Mardani A,Salihoglu N,Özen S "Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35, ss.1647 - 1664, 2020. 10.17341/gazimmfd.544678
ISNAD Yigit, Berna vd. "Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (2020), 1647-1664. https://doi.org/10.17341/gazimmfd.544678