Yıl: 2020 Cilt: 10 Sayı: 4 Sayfa Aralığı: 987 - 1008 Metin Dili: İngilizce İndeks Tarihi: 03-05-2021

GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION

Öz:
Abstract.We examine how Lorentz Symmetry (LS) breaks down inYarman-Arik-Kholmetskii (YARK) theory of gravitation through an entirely differentmechanism than that under metric theories of gravity. Said mechanism can be right awayextended to all other fields of interaction underYarman’s Approachthat forms the basis of YARK theory.The result is the disclosure of a new“Generalized Lorentz Group” of space-time transformations which contains an additionalparameter denoting the interactional energy per unit mass. Hence, the core findingherein is that the Minkowskian metric for an empty space-time should, when one is inthe presence of gravity or any other force field, be replaced by general equalitiesinvolving a novel coupling parameter for either attraction or repulsion.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]Cosserat, E. and Cosserat, F. (1909), Theory of deformable bodies (Théorie des corps déformables).Transl. D. H. Delphenich; Paris: Hermann.https://www.uni-due.de/~hm0014/Cosserat_files/Cosserat09_eng.pdf
  • [2]Noether, E. (1918), Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaftenzu Göttingen, Mathematisch-Physikalische Klasse, 235–57.https://gdz.sub.uni-goettingen.de/id/PPN252457811_1918?tify=%7B%22view%22:%22info%22,%22pages%22:%5B241%5D%7D
  • [3]Sato, H. and Tati, T. (1972), Hot universe, cosmic rays of ultrahigh energy and absolute referencesystem. Prog. Theor. Phys. 47(5), 1788–90.https://doi.org/10.1143/PTP.47.1788
  • [4]Amelino-Camelia, G. et al. (1998), Tests of quantum gravity from observations ofγ-ray bursts. Nature393, 763–5.https://www.nature.com/articles/31647
  • [5]Stecker, F. W. and Glashow, S. L. (2001), New tests of Lorentz Invariance following from observationsof the highest energy cosmic gamma rays. Astropart. Phys. 16(1), 97–9.https://doi.org/10.1016/S0927-6505(01)00137-2
  • [6]Poincaré, H. (1905), Sur la dynamique de l’éléctron. Comptes Rendus de l’Academie desSciences 140, 1504–8.https://www.academie-sciences.fr/pdf/dossiers/Poincare/Poincare_pdf/Poincare_CR1905.pdf
  • [7]Michelson A. A. and Morley E. W. (1887), On the relative motion of the Earth and theLuminiferous Ether. Am. J. Sci. 34(203), 333–45.https://history.aip.org/history/exhibits/gap/PDF/michelson.pdf
  • [8]Einstein, A. (1905), On the electrodynamics of moving bodies (Zur Elektrodynamik bewegter Körper).Transl. J. Walker; originally in Ann. Phys. 17, 891–921.http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdfand also cf.https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.19053221004
  • [9] Einstein, A. (1953), The Meaning of Relativity. Princeton: Princeton University Press.
  • [10]Kostelecký, A. and Samuel, S. (1989), Spontaneous breaking of Lorentz Symmetry in String Theory.Phys Rev. D 39(2), 683–5.https://journals.aps.org/prd/abstract/10.1103/PhysRevD.39.683
  • 11]Greenberg, O. W. (2002), CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett.89(23), 1602–6.https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.231602
  • [12]Particle Data Group — Amsler, C. et al. (2008), Review of particle physics. Phys. Lett. B 667(1-5),1–6.https://doi.org/10.1016/j.physletb.2008.07.018
  • [13]Tsukerman, I. S. (2010), CPT invariance and neutrino physics. Submitted on 24 Jun 2010 (v1), lastrevised 2 Aug 2010 (this version, v2).https://arxiv.org/abs/1006.4989
  • [14]Scully, S. T. and Stecker F. W. (2011), Testing Lorentz Invariance with neutrinos from ultrahigh energycosmic ray interactions. Astropart. Phys. 34(7), 575–80.https://doi.org/10.1016/j.astropartphys.2010.11.004
  • [15]Barrett, W. A., Holmstrom, F. E. and Keufel, J. W. (1959), Capture and decay ofμ−mesons in Fe.Phys. Rev. 113(2), 661–5.https://link.aps.org/doi/10.1103/PhysRev.113.661
  • [16]Lederman, L. M. and Weinrich, M. (1956), Lifetime of negative muons in various materials.CERN Symposium on High-energy Accelerators and Pion Physics (HEACC 1956) Proceedings(ed. E. Regenstreif), Vol. 2, 427–8.http://cds.cern.ch/record/107803?ln=en
  • [17]Yovanovitch, D. D. (1960), Decay rates of bound negative muons. Phys. Rev. 117(6), 1580–9.https://link.aps.org/doi/10.1103/PhysRev.117.1580
  • [18]Huff, R. W. (1961), Decay rate of bound muons. Ann. Phys. 16(2), 288–317.https://doi.org/10.1016/0003-4916(61)90039-2
  • [19]Kholmetskii, A., Yarman, T. and Missevitch, O.V. (2014), Conservative relativity principle: Logicalground and analysis of relevant experiments. Eur. Phys. J. Plus 129(5), 102nd.https://doi.org/10.1140/epjp/i2014-14102-7
  • [20]Yarman, T., Arik, M., et al. (2014), Alpha Head on Collision with a Fixed Gold Nucleus, Taking intoAccount the Relativistic Rest Mass Variation as Implied by Mass-Energy Equivalence. Acta Phys. Pol.B 125(2), 618–9.http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.bwnjournal-article-appv125n2145kz?printView=true
  • [21]Yarman, T. (2001), A novel approach to the end results of the general theory of relativityand to bound muon decay retardation. American Physical Society DAMOP Meeting, SessionJ3, May 16-19, 2001 London, Ontario, Canada Bulletin of the American Physical Society, 46(3).https://ui.adsabs.harvard.edu/abs/2001APS..DMP.J3011Y/abstract
  • [22]Yarman T. (2005), A novel approach to the bound muon decay rate retardation: Metric changenearby the nucleus. Physical Interpretations of the Theory of Relativity (PIRT) Conference, BaumanMoscow State Technical University, July 4-7, 2005 Moscow.http://www.pirt.info/files/documents/proceedings_PIRT_2005.pdf
  • [23]Kholmetskii, A., Yarman, T. and Missevitch, O.V. (2011), Going from classical to quantum descriptionof bound charged particles 1: Basic concepts and assertions. Eur. Phys. J. Plus 126(4), 33rd.https://doi.org/10.1140/epjp/i2011-11033-9
  • [24]Kholmetskii, A., Yarman, T. and Missevitch, O.V. (2011), Going from classical to quantum descriptionof bound charged particles 2: Implications for the atomic physics. Eur. Phys. J. Plus 126(4), 35th.https://doi.org/10.1140/epjp/i2011-11035-7
  • [25]Kholmetskii, A., Missevitch, O.V. and Yarman, T. (2012), Hyperfine spin-spin interaction and Zeemaneffect in the pure bound field theory. Eur. Phys. J. Plus 127(4), 44th.https://doi.org/10.1140/epjp/i2011-11033-9
  • [26]Kholmetskii, A., Missevitch, O.V. and Yarman, T. (2014), Pure bound field corrections to the atomicenergy levels and the proton size puzzle. Can. J. Phys. 92(4), 321–7.https://doi.org/10.1139/cjp-2013-0514
  • [27]Kholmetskii, A., Yarman, T. and Missevitch, O.V. (2011), Pure bound field theory and the decay ofmuon in meso-atoms. Int. J. Theor. Phys. 50(5), 1407–16.https://doi.org/10.1007/s10773-010-0649-y
  • [28]Yarman, T., Kholmetskii, A. and Arik, M. (2015), Mössbauer experiments in a rotating system:Recent errors and novel interpretation. Eur. Phys. J. Plus 130(10), 191st.https://epjplus.epj.org/articles/epjplus/abs/2015/10/13360_2015_Article_922/13360_2015_Article_922.html
  • [29]Yarman, T., Arik, M., et al. (2015), Super-massive objects in Yarman-Arik-Kholmetskii (YARK)gravitation theory. Can. J. Phys. 94(3), 271–8.http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2015-0689#.WsBWkiN9478
  • [30]Arik, M., Yarman, T., et al. (2016), Yarman’s approach predicts anomalous gravitational bending ofhigh-energy gamma-quanta. Can. J. Phys. 94(6), 616–22.http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2015-0291#.WsBWsyN9478
  • [31]Yarman, T., Kholmetskii, A., et al. (2016), Novel Mössbauer experiment in a rotating systemand the extra-energy shift between emission and absorption lines. Can. J. Phys. 94(8), 780–9.https://www.nrcresearchpress.com/doi/10.1139/cjp-2015-0063#.XrCBSyN9478
  • [32]Yarman, T., Kholmetskii, A., et al. (2019), The Eötvös experiment, GTR, and differing gravitationaland inertial masses Proposition for a crucial test of metric theories. In Journal of Physics: ConferenceSeries, 1251, Advances in Fundamental Physics — Prelude to Paradigm Shift, 11th InternationalSymposium Honoring Noted Mathematical Physicist Jean-Pierre Vigier, 6–9 August 2018, Liege,Belgium.https://iopscience.iop.org/article/10.1088/1742-6596/1251/1/012051
  • [33]Yarman, T. (2004), The general equation of motion via the special theory of relativiy andquantum mechanics. Ann. Fond. Louis de Broglie 29(3), 459–91.http://aflb.ensmp.fr/AFLB-293/aflb293m137.htm
  • [34]Yarman, T. (2006), The End Results of General Relativity Theory via Just Energy Conservation andQuantum Mechanics. Found. Phys. Lett. 19(7), 675–93.https://link.springer.com/article/10.1007/s10702-006-1057-7
  • [35]Yarman, T. (2009), Revealing the Mystery of the Galilean Principle of Relativity. Part I: Basic Assertions.Int. J. Theor. Phys. 48(8), 2235–45.https://link.springer.com/article/10.1007/s10773-009-0005-2
  • [36]Yarman, T. (2010), Wave-like interaction, occurring at superluminal speeds, or the same, de Broglierelationship, as imposed by the law of energy conservation: Electrically bound particles (Part I).Int. J. Phys. Sci. 5(17), 2679–704.http://www.academicjournals.org/article/article1380883559_Yarman.pdf
  • [37]Yarman, T. (2011), Wave-like interaction, occurring at superluminal speeds, or the same, de Broglierelationship, as imposed by the law of energy conservation: Gravitationally bound particles (Part II).Int. J. Phys. Sci. (6)8, 2117–42.http://www.academicjournals.org/article/article1380731737_Yarman.pdf
  • [38]Yarman, T. (2013), Scaling properties of quantum mechanical equations working as the framework ofrelativity: Principal articulations about the Lorentz invariant structure of matter. Phys. Essays 26(4),473–93.https://physicsessays.org/browse-journal-2/product/26-2-tolga-yarman-scaling-properties-of-quantum-mechanical-equations-working-as-the-framework-of-relativity-principal-articulations-about-the-lorentz-invariant-structure-of-matter.html
  • [39]Yarman, T. (2014), Scaling properties of quantum mechanical equations, working as the frameworkof relativity: Applications drawn by a unique architecture, matter is made of. Phys. Essays (27)1,104–15.https://physicsessays.org/browse-journal-2/product/146-11-tolga-yarman-scaling-properties-of-quantum-mechanical-equations-working-as-the-framework-of-relativity-applications-drawn-by-a-unique-architecture-matter-is-made-of.html
  • [40]Yarman, T. (2010), The Quantum Mechanical Framework Behind the End Results of the GeneralTheory of Relativity: Matter Is Built on a Matter Architecture. New York: Nova Publishers.
  • [41]Sobczyk, G. and Yarman T. (2008), Unification of space-time-matter-energy. Appl. & Computat. Math.7(2), 255–68.http://acmij.az/view.php?lang=az&menu=journal&id=219
  • [42]Yarman, T. and Kholmetskii, A. (2013), Sketch of a cosmological model based on the law of energyconservation. Eur. Phys. J. Plus 128(1), 8th.https://link.springer.com/article/10.1140/epjp/i2013-13008-2
  • [43]Yarman, T., Arik, M. and Kholmetskii, A. (2013), Radiation from an accelerating neutral body: Thecase of rotation. Eur. Phys. J. Plus 128(11), 134th.https://doi.org/10.1140/epjp/i2013-13134-9
  • [44]Yarman, T., Kholmetskii, A., et al. (2014), Novel theory leads to the classical outcome forthe precession of the perihelion of a planet due to gravity. Phys. Essays 27(4), 558–69.https://physicsessays.org/browse-journal-2/product/1037-8-tolga-yarman-alexander-kholmetskii-metin-arik-and-ozan-yarman-novel-theory-leads-to-the-classical-outcome-for-the-precession-of-the-perihelion-of-a-planet-due-to-gravity.html
  • [45]Yarman, T., Kholmetskii, A., and Arik, M. (2014), Bending of light caused by gravitation:the same result via totally different philosophies. Submitted to arxiv.org on 14 Jan 2014.https://arxiv.org/abs/1401.3110
  • [46]Yarman, T., Kholmetskii, A., et al. (2016), Pound-Rebka result within the framework of YARK theory.Can. J. Phys. 94(6), 558–62.http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2016-0059#.WsBWuyN9478
  • [47]Kholmetskii, A., Yarman, T. and Missevitch, O.V. (2008), Kündig’s experiment on the transverseDoppler shift re-analyzed. Phys. Scr. 77(3), 035302.https://doi.org/10.1088/0031-8949/77/03/035302
  • [48]Kholmetskii, A., Yarman, T. and Missevitch, O.V. (2009), Moessbauer experiment in a rotating system:The change of time rate for resonant nuclei due to the motion and interaction energy. Il Nuovo CimentoB 124(8), 791–803.https://en.sif.it/journals/sif/ncb/econtents/2009/124/08/article/8
  • [49]Kholmetskii, A., Yarman, T., et al. (2009), A Mössbauer experiment in a rotating system on thesecond order Doppler shift: confirmation of the corrected result by Kündig. Phys. Scr. 79(6), 065007.https://doi.org/10.1088/0031-8949/79/06/065007
  • [50]Kholmetskii, A., Yarman, T. and Arik, M. (2015), Comment on “Interpretation of Mössbauer experimentin a rotating system: A new proof by general relativity”. Ann. Phys. 363, 556–8.https://doi.org/10.1016/j.aop.2015.09.007
  • [51]Kholmetskii, A., Yarman, T., et al. (2016), Response to “The Mössbauer rotor experiment and thegeneral theory of relativity” by C. Corda. Ann. Phys. 374, 247–54.https://doi.org/10.1016/j.aop.2016.08.016and also cf. the unabridged versionhttps://arxiv.org/abs/1610.04219
  • [52]Kholmetskii, A., Yarman, T., et al. (2018), Mössbauer experiments in a rotating system, Dopplereffect and the influence of acceleration. Eur. Phys. J. Plus 133(7), 261st.https://link.springer.com/article/10.1140/epjp/i2018-12089-7
  • [53]Kholmetskii, A., Yarman, T., et al. (2018), Einstein’s “Clock Hypothesis” and Mössbauer Experimentsin a Rotating System. Z. Naturforsch. A 74(2).https://www.degruyter.com/view/journals/zna/74/2/article-p91.xml?language=en
  • [54]Kholmetskii, A., Yarman, T., et al. (2018), Elaborations on Mössbauer rotor experiments withsynchrotron radiation and with usual resonant sources. J. Synchrotron Radiat. 25(6), 1703-10.https://doi.org/10.1107/S1600577518011815
  • [55]Kholmetskii, A., Yarman, T., et al. (2019), Comment on “New proof of general relativity through thecorrect physical interpretation of the Mössbauer rotor experiment” by C. Corda. Int. J. Mod. Phys28(10), 1950127.https://doi.org/10.1142/S021827181950127X
  • [56]Kholmetskii, A., Yarman, T., et al. (2019), On the synchronization of a clock at the origin of arotating system with a laboratory clock in Mössbauer rotor experiments. Ann. Phys. 409, 167931.https://doi.org/10.1016/j.aop.2019.167931
  • [57]Kholmetskii, A., Yarman, T., et al. (2019), Concerning Mössbauer experiments in a rotating system andtheir physical interpretation. Ann. Phys. 411, 167912.https://doi.org/10.1016/j.aop.2019.167912
  • [58]Kholmetskii, A., Yarman, T., et al. (2020), Analyses of Mössbauer experiments in a rotating system:Proper and improper approaches. Ann. Phys. 418, 168191.https://doi.org/10.1016/j.aop.2020.168191
  • [59]Yarman, T., Kholmetskii, A., et al. (2017), LIGO’s “GW150914 signal” reproduced under YARK theoryof gravity. Can. J. Phys. 95(10), 963–8.http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2016-0699#.WsBWziN9478
  • [60]Yarman, T., Kholmetskii, A., et al. (2019), LIGO’s “GW150914 signal” reproduced under YARKtheory of gravity. In Journal of Physics: Conference Series, 1251, Advances in Fundamental Physics —Prelude to Paradigm Shift, 11th International Symposium Honoring Noted Mathematical PhysicistJean-Pierre Vigier, 6–9 August 2018, Liege, Belgium.https://iopscience.iop.org/article/10.1088/1742-6596/1251/1/012052
  • [61]Yarman, T. and Kholmetskii, A. (2011), How do quantum numbers generally vary in the adiabatictransformation of an ideal gas?. Chin. Phys. B 20(10), 105101.https://doi.org/10.1088/1674-1056/20/10/105101
  • [62]Yarman, T., Kholmetskii, A., et al. (2018), Second law of thermodynamics is ingrained within quantummechanics. Results Phys. 10(3), 818–21.https://doi.org/10.1016/j.rinp.2018.06.058
  • [63]Yarman, T., Kholmetskii, A., et al. (2020),Redshift of the light from the star S0-2: Comparison ofthe predictions of general theory of relativity and YARK theory of gravity. Under review in Found.Phys. as FOOP-D-20-00261. Cf.https://www.academia.edu/40249885/WEIGHTLESSNESS_IN_SUPER-DENSE_MASS_MEDIA_VIA_QUANTUM_MECHANICS_YARK_THEORY_PREDICTS_A_SOFTENED_REDSHIFT_THAN_GTR_DOES_IN_CRUISE_NEAR_OUR_GALACTIC_CENTER_AND_POSSIBLY_NONE_BEYOND
  • [64]Landau, L. D. and Lifshitz, E. M. (1999), Classical Theory of Fields. Transl. M. Hamermesh; Oxford:Butterworth & Heinemann.
  • [65]Yarman, T. (2011), Superluminal interaction as the basis of Quantum Mechanics: Awhole new unification of micro and macro worlds. LAP Lambert Academic Publishing.https://naturalphilosophy.org/home/member/?memberid=1122&subpage=books
  • [66]Gharibyan, V. (2014), Accelerator experiments contradicting general relativity (@ DeutschesElektronen-Synchrotron [DESY, Hamburg]). Submitted on 13 Jan 2014 (v1), last revised 12 Jul2014 (this version, v2).https://arxiv.org/abs/1401.3720
APA Yarman T, ALTINTAS A, Kholmetskii A, arik m, Marshall C, Yarman O, Ozaydin F (2020). GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. , 987 - 1008.
Chicago Yarman Tolga,ALTINTAS AZMI ALI,Kholmetskii Alexander,arik metin,Marshall Christian,Yarman Ozan,Ozaydin Fatih GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. (2020): 987 - 1008.
MLA Yarman Tolga,ALTINTAS AZMI ALI,Kholmetskii Alexander,arik metin,Marshall Christian,Yarman Ozan,Ozaydin Fatih GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. , 2020, ss.987 - 1008.
AMA Yarman T,ALTINTAS A,Kholmetskii A,arik m,Marshall C,Yarman O,Ozaydin F GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. . 2020; 987 - 1008.
Vancouver Yarman T,ALTINTAS A,Kholmetskii A,arik m,Marshall C,Yarman O,Ozaydin F GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. . 2020; 987 - 1008.
IEEE Yarman T,ALTINTAS A,Kholmetskii A,arik m,Marshall C,Yarman O,Ozaydin F "GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION." , ss.987 - 1008, 2020.
ISNAD Yarman, Tolga vd. "GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION". (2020), 987-1008.
APA Yarman T, ALTINTAS A, Kholmetskii A, arik m, Marshall C, Yarman O, Ozaydin F (2020). GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. TWMS (Turkic World Mathematical Society) Journal of Applied and Engineering Mathematics, 10(4), 987 - 1008.
Chicago Yarman Tolga,ALTINTAS AZMI ALI,Kholmetskii Alexander,arik metin,Marshall Christian,Yarman Ozan,Ozaydin Fatih GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. TWMS (Turkic World Mathematical Society) Journal of Applied and Engineering Mathematics 10, no.4 (2020): 987 - 1008.
MLA Yarman Tolga,ALTINTAS AZMI ALI,Kholmetskii Alexander,arik metin,Marshall Christian,Yarman Ozan,Ozaydin Fatih GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. TWMS (Turkic World Mathematical Society) Journal of Applied and Engineering Mathematics, vol.10, no.4, 2020, ss.987 - 1008.
AMA Yarman T,ALTINTAS A,Kholmetskii A,arik m,Marshall C,Yarman O,Ozaydin F GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. TWMS (Turkic World Mathematical Society) Journal of Applied and Engineering Mathematics. 2020; 10(4): 987 - 1008.
Vancouver Yarman T,ALTINTAS A,Kholmetskii A,arik m,Marshall C,Yarman O,Ozaydin F GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION. TWMS (Turkic World Mathematical Society) Journal of Applied and Engineering Mathematics. 2020; 10(4): 987 - 1008.
IEEE Yarman T,ALTINTAS A,Kholmetskii A,arik m,Marshall C,Yarman O,Ozaydin F "GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION." TWMS (Turkic World Mathematical Society) Journal of Applied and Engineering Mathematics, 10, ss.987 - 1008, 2020.
ISNAD Yarman, Tolga vd. "GENERALIZED LORENTZ GROUPOF SPACE-TIME TRANSFORMATION". TWMS (Turkic World Mathematical Society) Journal of Applied and Engineering Mathematics 10/4 (2020), 987-1008.