Yıl: 2020 Cilt: 11 Sayı: 1 Sayfa Aralığı: 92 - 99 Metin Dili: Türkçe DOI: 10.22312/sdusbed.663909 İndeks Tarihi: 06-05-2021

Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi

Öz:
Amaç: Dünya çapında milyonlarca kişi epilepsi hastasıolarak sorun yaşamaktadır ve hastaların %25'inde şu andamevcut bulunan antiepileptik ilaçlara karşı dirençli nöbetlergözlenmektedir. Bu nedenlerle, halen etkili ve tolere edilebilendaha fazla sayıda antiepileptik ilaca ihtiyaç duyulmaya devamedilmektedir. Oksolamin sitrat, pre-klinik verilere dayanarakantiepileptik aktiviteye sahip olabilen yaygın bir antitussifilaçtır.Materyal-Metot: Sıçanlar randomize bir şekildeintraperitoneal (i.p.) Oksolamin ile iki farklı dozda veplasebo şeklinde tedavi edildi ve daha sonrasında güçlübir nöbet indükleyici bileşik olan pentilentetrazole (PTZ)i.p. olarak maruz bırakıldı. Oksolaminin epilepsi için sıçanmodelimizde antiepileptik özelliklere sahip olup olmadığınıbelirlemede sıçanların hemen sonrasındaki nöbet aktivitesielektroensefalografi (EEG), Racine'nin konvülsiyonölçeği (RCS) ve ilk miyoklonik jerk (TFMJ) zamanı iledeğerlendirildi.Bulgular: Plasebo ile karşılaştırıldığında, her iki dozdaOksolamin, nöbet aktivitesini önemli ölçüde inhibe etti.Ortalama EEG spike dalga yüzdesi % 75,3'ten (plasebo)% 35,8'e (düşük doz, p<0,01) ve %28,6'ya (yüksek doz,p<0,0001) azaldı. RCS, ortalama 5,7'den (plasebo) 4,7'ye(düşük doz, p<0.001) ve 3,3'e (yüksek doz, p<0,0001) düştü.TFMJ ortalama 62,5s'den (plasebo), 177,5s'ye (düşük doz,p<0,001) ve 223,3s'ye (yüksek doz, p<0,0001) yükseldi.Sonuç: Yaygın bir antitussif ilaç olan Oksolamin sitrat,PTZ ile indüklenen status epileptikus sıçan modelinde nöbetaktivitesini baskılamaktadır. Refrakter epilepsi için devameden etkili yeni tedaviler bulma gereksinimi göz önünealındığında, oksolaminin antiepileptik olarak kullanılmaolasılığı daha ileri düzeyde araştırılmalıdır.
Anahtar Kelime:

Anticonvulsant Effect of Oxolamine Citrate in Pentylenetetrazole Induced Experimental Epilepsy Model in Rats

Öz:
Objective: Millions of individuals worldwide suffer from epilepsy, and up to 25% of patients have seizures that are resistant to currently available antiepileptic drugs. Hence, there continues to be a need for more seizure medications that are effective yet tolerable. Oxolamine citrate is an established antitussive drug that, based on preclinical data, may also have antiepileptic activity. Material-Method: We treated rats with either intraperitoneal (i.p.) Oxolamine citrate at two different doses or placebo in randomized fashion and then exposed them to i.p. pentylenetetrazol (PTZ), a potent seizure-inducing compound. We measured the rats’ subsequent seizure activity with electroencephalography (EEG), Racine’s convulsion scale (RCS) and time to first myoclonic jerk (TFMJ) to determine whether Oxolamine citrate has antiepileptic properties in our rat model for epilepsy. Results: When compared to placebo, Oxolamine at both doses significantly suppressed seizure activity. Mean EEG spike wave percentage score decreased from 75.3% (placebo) to 35.8% (lower dose, p<0.01) and 28.6% (higher dose, p<0.0001). RCS decreased from a mean of 5.7 (placebo) to 4.7 (lower dose, p<0.001) and 3.3 (higher dose, p<0.0001). TFMJ had increased from a mean of 62.5 s (placebo), to 177.5 s (lower dose, p<0.001) and 223.3 s (higher dose, p<0.0001). Conclusions: Oxolamine citrate, a common antitussive drug, suppresses seizure activity in rats with PTZ-induced status epilepticus. Given the ongoing need to find effective therapies for refractory epilepsy, the possibility of using oxolamine as an antiepileptic should be further explored.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Wyllie E. Wyllie’s Treatment of Epilepsy: Principles and Practice, sixth edition. Wolters Kluwer Health; 2015.
  • 2. Motamedi G, Meador K. Epilepsy and cognition. Epilepsy Behav 2003; 4 (Suppl. 2): 25–38.
  • 3. Schmidt D. Drug treatment of epilepsy: options and limitations. Epilepsy Behav 2009; 15: 56–65.
  • 4. Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord 2011; 4: 385–407.
  • 5. Kanner AM, Schachter SC, Barry JJ, Hesdorffer DC, Mula M, Trimble M, et al. Depression and epilepsy: epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav. 2012; 24: 156–168.
  • 6. Chang BS, Lowenstein DH. Epilepsy. N Engl J Med 2003; 349: 1257–66.
  • 7. Cowan LD. The epidemiology of the epilepsies in children. Ment Retard Dev Disabil Res Rev 2002; 8: 171–181.
  • 8. Reddy DS, Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci 2013; 14: 18284–318.
  • 9. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, et al. Role of oxidative stress in epileptic seizures. Neurochem Int 2011; 59: 122–37.
  • 10. Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signaling pathways. Biochem Soc Trans 2001; 29: 345–50.
  • 11. Elger CE, Helmstaedter C, Kurthen M. Chronic epilepsy and cognition. Lancet Neurol 2004; 3: 663–72.
  • 12. Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, et al. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 2014; 21: 663–88.
  • 13. Kang JQ, Macdonald RL. Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 2009; 15: 430–8.
  • 14. Olsen RW, DeLorey TM, Gordey M, Kang MH. GABA receptor function and epilepsy. Adv Neurol 1999; 79: 499– 510.
  • 15. McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Science Signaling 2006; 356: re12.
  • 16. Nalivaiko E, Michaud JC, Soubrié P, Le Fur G, Feltz P. Tachykinin neurokinin-1 and neurokinin-3 receptormediated responses in guinea-pig substantia nigra: an in vitro electrophysiological study. Neuroscience 1997; 78: 745–57.
  • 17. Liu H, Mazarati AM, Katsumori H, Sankar R, Wasterlain CG. Substance P is expressed in hippocampal principal neurons during status epilepticus and plays a critical role in the maintenance of status epilepticus. Proc Natl Acad Sci U S A 1999; 96: 5286–91.
  • 18. Penix LP, Thompson KW, Wasterlain CG. Selective vulnerability to perforant path stimulation: role of NMDA and non-NMDA receptors. Epilepsy Res 1996; Suppl. 12: 63–73.
  • 19. Silvestrini B, Pozzatti C. Pharmacological properties of 3-phenyl-5β diethylaminoethyl-1, 2, 4-oxadiazole. Br J Pharmacol Chemother 1961; 16: 209-17.
  • 20. Erbaş O, Solmaz V, Aksoy D. Inhibitor effect of dexketoprofen in rat model of pentylenetetrazol-induced seizures. Neurol Res 2015; 37: 1096–1101.
  • 21. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 2006; 101: 618–27.
  • 22. Aeby A, Poznanski N, Verheulpen D, Wetzburger C, Van Bogaert P. Levetiracetam efficacy in epileptic syndromes with continuous spikes and waves during slow sleep: experience in 12 cases. Epilepsia 2005; 46: 1937–42.
  • 23. Fernández IS, Peters JM, Hadjiloizou S, Prabhu SP, Zarowski M, Stannard KM, et al. Clinical staging and electroencephalographic evolution of continuous spikes and waves during sleep. Epilepsia 2012; 53: 1185–95.
  • 24. Lüttjohann A, Fabene PF, van Luijtelaar G. A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav 2009; 98: 579–86.
  • 25. Canning BJ. Encoding of the cough reflex. Pulm Pharmacol Ther 2007; 20: 396–401.
  • 26. Walker BR, Easton A, Gale K. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia 1999; 40: 1051–7.
  • 27. Epilepsy. World Health Organization. [cited 2019 December 10]. Available from: http://www.who.int/newsroom/ factsheets/detail/epilepsy.
  • 28. Avoli M, D’Antuono M, Louvel J, Köhling R, Biagini G, Pumain R, et al. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 2002; 68: 167–207.
  • 29. Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 2010; 9: 413–24.
  • 30. Badawy RAB, Harvey AS, Macdonell RAL. Cortical hyperexcitability and epileptogenesis: understanding the mechanisms of epilepsy - part 1. J Clin Neurosci 2009; 16: 355–65.
  • 31. Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in generalized epilepsy: a focus on antiepileptic drugs. Curr Med Chem 2011; 18: 4933–48.
  • 32. Meldrum BS. Neurotransmission in epilepsy. Epilepsia 1995; 36 (Suppl. 1): 30–5.
  • 33. Bolser DC, Poliacek I, Jakus J, Fuller DD, Davenport PW. Neurogenesis of cough, other airway defensive behaviors and breathing: A holarchical system? Respir Physiol Neurobiol 2006; 152: 255–65.
  • 34. Polverino M, Polverino F, Fasolino M, Andò F, Alfieri A, De Blasio F. Anatomy and neuro-pathophysiology of the cough reflex arc. Multidiscip Respir Med 2012; 7(1): 5.
  • 35. Canning BJ, Mori N. Encoding of the cough reflex in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 2011; 300: 369–77.
  • 36. Coleridge JC, Coleridge HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 1984; 99: 1–110.
  • 37. Shannon R, Baekey DM, Morris KF, Lindsey BG. Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J Appl Physiol 1998; 84: 2020–35.
  • 38. Shannon R, Baekey DM, Morris KF, Li Z, Lindsey BG. Functional connectivity among ventrolateral medullary respiratory neurones and responses during fictive cough in the cat. J Physiol 2000; 525(1): 207–24.
  • 39. Canning BJ, Chang AB, Bolser DC, Smith JA, Mazzone SB, McGarvey L, et al. Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. Chest 2014; 146(6): 1633–48.
  • 40. Jhamandas JH, Harris KH. Excitatory amino acids may mediate nucleus tractus solitarius input to rat parabrachial neurons. Am J Physiol 1992; 263: 324–30.
  • 41. Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 1990; 31(Suppl 2): 1–6.
  • 42. Havaldar FH, Patil AR. Synthesis of biologically active 3-[4-(4-substituted amino-4-yl-methyl-5-thione[1,3,4]- oxadiazole-2-yl-methoxy)-phenyl]-2-phenyl-3H-quinazolin- 4-ones. Asian J Chem 2009; 21: 5267–72.
  • 43. Mehta DK, Das R, Dua K. Synthesis, antimicrobial and anti-inflammatory activity of some new 1,3,4-oxadiazoles and 1,3,4-oxadiazole-2-thione derivatives as mannich bases containing furan moiety. Int J Chem Sci 2009; 7: 225–34.
  • 44. Nagalakshmi G. Synthesis, antimicrobial and antiinflammatory activity of 2,5-disubstituted-1,3,4-oxadiazoles. Indian J Pharm Sci 2008; 70: 49–55.
  • 45. Husaini A, Ahmad FJ, Ajmal M, Ahuja P. Synthesis of 1-(4-phenoxyphenyl)-3-[5-(substituted aryl)-1,3,4-oxadiazol- 2-yl]propan-1-ones as safer anti-inflammatory and analgesic agents. J Serb Chem Soc 2008; 73: 781–91.
  • 46. George S, Parameswaran MK, Chakraborty AR, Ravi TK. Synthesis and evaluation of the biological activities of some 3-{[5-(6-methyl-4-aryl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-yl)-1,3,4-oxadiazol-2-yl]-imino}-1,3-dihydro-2H-indol-2- one derivatives. Acta Pharm 2008; 58: 119–29.
  • 47. Mishra AR, Singh DV, Mishra RM. Synthesis and antifungal activity of new 1,3,4-oxadiazolo[3,2-b]-s-triazine- 5-ones and their thiones analogues. Indian J Heterocycl Chem 2005; 14: 289–92.
  • 48. Girges MM. Synthesis and pharmacological evaluation of novel series of sulfonate ester-containing 1,3,4-oxadiazole derivatives with anticipated hypoglycemic activity. Arzneimittelforschung 1994; 44: 490–5.
  • 49. Revanasiddappa BC, Subrahmanyam EVS. Chloramine-T mediated synthesis of 1,3,4-oxadiazoles. Orient J Chem 2009; 25: 707–710.
  • 50. Maslat AO, Abussaud M, Tashtoush H, Al-Taalib M. Synthesis, antibacterial, antifungal and genotoxic activity of bis-1,3,4-oxadiazole derivatives. Pol J Pharmacol 2002; 54: 55–9.
  • 51. Borg S, Luthman K, Nyberg F, Terenius L, Hacksell U. 1, 2, 4-Oxadiazole derivatives of phenylalanine: potential inhibitors of substance P endopeptidase. European journal of medicinal chemistry 1993; 28(10): 801-10.
  • 52. Lankau HJ, Unverferth K, Grunwald C, Hartenhauer H, Heinecke K, Bernöster K, et al. New GABA-modulating 1, 2, 4-oxadiazole derivatives and their anticonvulsant activity. European journal of medicinal chemistry 2007; 42(6): 873-9.
  • 53. Gilani SJ, Alam O, Khan SA, Siddiqui N, Kumar H. Synthesis of some derived thiazolidin-4-one, azetidin-2-one and 1, 3, 4-oxadiazole ring system from isoninicotinic acid hydrazide: A novel class of potential anticonvulsant agent. Der Pharmacial Letter 2009; 1(2): 1-8.
  • 54. Zarghi A, Hamedi S, Tootooni F, Amini B, Sharifi B, Faizi M, et al. Synthesis and pharmacological evaluation of new 2-substituted-5-{2-[(2-halobenzyl) thio) phenyl}-1, 3, 4-oxadiazoles as anticonvulsant agents. Scientia Pharmaceutica 2008; 76(2): 185-202.
APA Erdogan M, erbas o (2020). Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. , 92 - 99. 10.22312/sdusbed.663909
Chicago Erdogan Mumin,erbas oytun Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. (2020): 92 - 99. 10.22312/sdusbed.663909
MLA Erdogan Mumin,erbas oytun Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. , 2020, ss.92 - 99. 10.22312/sdusbed.663909
AMA Erdogan M,erbas o Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. . 2020; 92 - 99. 10.22312/sdusbed.663909
Vancouver Erdogan M,erbas o Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. . 2020; 92 - 99. 10.22312/sdusbed.663909
IEEE Erdogan M,erbas o "Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi." , ss.92 - 99, 2020. 10.22312/sdusbed.663909
ISNAD Erdogan, Mumin - erbas, oytun. "Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi". (2020), 92-99. https://doi.org/10.22312/sdusbed.663909
APA Erdogan M, erbas o (2020). Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 11(1), 92 - 99. 10.22312/sdusbed.663909
Chicago Erdogan Mumin,erbas oytun Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi 11, no.1 (2020): 92 - 99. 10.22312/sdusbed.663909
MLA Erdogan Mumin,erbas oytun Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, vol.11, no.1, 2020, ss.92 - 99. 10.22312/sdusbed.663909
AMA Erdogan M,erbas o Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020; 11(1): 92 - 99. 10.22312/sdusbed.663909
Vancouver Erdogan M,erbas o Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020; 11(1): 92 - 99. 10.22312/sdusbed.663909
IEEE Erdogan M,erbas o "Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi." Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 11, ss.92 - 99, 2020. 10.22312/sdusbed.663909
ISNAD Erdogan, Mumin - erbas, oytun. "Pentilentetrazol ile Sıçanlarda Oluşturulan Deneysel Epilepsi Modelinde Oksolamin Sitratın Antikonvulsan Etkisi". Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi 11/1 (2020), 92-99. https://doi.org/10.22312/sdusbed.663909