Yusuf ALAGÖZ
(Siirt Üniversitesi, Matematik Bölümü, Siirt, Türkiye)
Yıl: 2020Cilt: 8Sayı: 1ISSN: 2147-6268Sayfa Aralığı: 46 - 50İngilizce

71 0
On M-injective and M-projective Modules
A left R-module M is called max-injective (or m-injective for short) if for any maximal left ideal I, any homomorphism f : I → M can be extended to g : R → M, if and only if Ext1 R(R/I, M) = 0 for any maximal left ideal I. A left R-module M is called max-projective (or m-projective for short) if Ext1 R(M, N) = 0 for any max-injective left R-module N. We prove that every left R-module has a special m-projective precover and a special m-injective preenvelope. We characterize C-rings, SF rings and max-hereditary rings using m-projective and m-injective modules.
DergiDiğerErişime Açık
  • [1] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting modules. Frontiers in Mathematics, Birkhaauser Verlag, Basel (2006).
  • [2] Enochs, E.E., Jenda, O.M.G.: Relative homological algebra. Berlin: Walter de Gruyter (2000).
  • [3] Enochs, E.E., Jenda, O.M.G., Lopez-Ramos, J.A.: The existence of Gorenstein flat covers. Math. Scand. 94(1), 46-62 (2004).
  • [4] Eklof, P.C., Trlifaj, J.: How to make Ext vanish, Bull. London Math. Soc. 33(12), 41-51 (2001).
  • [5] Garcia Rozas, J.R., Torrecillas, B.: Relative injective covers, Comm. Algebra, 22(8), 2925-2940 (1994).
  • [6] Megibben, C.: Absolutely pure modules. Proc. Amer. Math. Soc. 18, 155-158 (1967).
  • [7] Moradzadeh-Dehkordi, A., Shojaee, S.H.: Rings in which every ideal is pure-projective or FP-projective. J. Algebra, 478, 419-436 (2017).
  • [8] Ramamurthi, V.S.: On the injectivity and flatness of certain cyclic modules. Proc. Amer. Math. Soc. 48, 21-25 (1975).
  • [9] Smith, P.F.: Injective modules and prime ideals. Comm. Algebra, 9(9), 989-999 (1981).
  • [10] Wang, M.Y., Zhao, G.: On maximal injectivity. Acta Math. Sin. 21(6), 1451-1458 (2005).
  • [11] Xiang, Y.: Max-injective, max-flat modules and max-coherent rings. Bull. Korean Math. Soc. 47(3), 611-622 (2010).

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.