G. Canan HAZAR GÜLEÇ
(Pamukkale Üniversitesi, Matematik Bölümü, Denizli, Türkiye)
Yıl: 2020Cilt: 8Sayı: 1ISSN: 2147-6268Sayfa Aralığı: 91 - 99İngilizce

72 0
A New Paranormed Series Space and Matrix Transformations
The series space |C−1|p has been studied for 1 ≤ p < ∞ by Hazar and Sarıgöl in [9]. The main purpose of this work is to define a new paranormed space |C−1|(p), where p = (pk) is a bounded sequence of positive real numbers, which generalizes the results of Hazar and Sarıgöl in [9] to paranormed space. Also, we investigate some topological properties such as the completeness and the isomorphism, and we determine the α−, β−, and γ duals of this paranormed space. Additionally, we give characterization of the classes of infinite matrices (|C−1|(p), µ) and (µ, |C−1|(p)), where µ is any given sequence space.
DergiDiğerErişime Açık
  • [1] Altay, B., Ba¸sar, F.: On the paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bull. Math. 26 (5), 701-715 (2003).
  • [2] Altay, B., Ba¸sar, F.: Some paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bull. Math. 30 (4), 591-608 (2006).
  • [3] Aydın, C., Ba¸sar, F.: Some generalizations of the sequence space. Iranian Journal of Science and Technology, Transaction A: Science. 30, No.A2 (2006).
  • [4] Ba¸sar, F., Altay, B.: Matrix mappings on the space bs(p) and its α-,β-,γ- duals. Aligarh Bull. Math. 21 (1),79-91 (2002).
  • [5] Ba¸sar, F., Altay, B., Mursaleen, M.: Some generalizations of the space bvp of p-bounded variation sequences. Nonlinear Analysis: Theory, Methods & Applications. 68 (2), 273-287 (2008).
  • [6] Flett, T.M.: On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. 7 113-141 (1957).
  • [7] Grosse-Erdmann, K.G.: Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl. 180 223-238 (1993).
  • [8] Gökçe, F., Sarıgöl M.A.: A new series space N¯ θ p (µ) and matrix operators with applications. Kuwait Journal of Science. 45 (4), 1-8 (2018).
  • [9] Hazar Güleç, G.C., Sarıgöl M. A.: Compact and Matrix Operators on the Space |C, −1|k . J. Comput. Anal. Appl. 25 (6), 1014-1024 (2018).
  • [10] Hazar, G. C., Sarıgöl M. A.: Absolute Cesàro series spaces and matrix operators. Acta App. Math. 154, 153-165 (2018).
  • [11] Hazar Güleç, G. C.: Compact Matrix Operators on Absolute Cesàro Spaces. Numer. Funct. Anal. Optim. 41 (1), 1-15 (2020).
  • [12] ˙Ilkhan, M., Kara, E.E.: A new Banach space defined by Euler totient matrix operator. Operators & Matrices. 13 (2), 527-544 (2019).
  • [13] ˙Ilkhan, M., Demiriz, S., Kara, E.E.: A new paranormed sequence space defined by Euler totient matrix . Karaelmas Science and Engineering Journal. 9 (2), 277-282 (2019).
  • [14] Kara, E. E., Demiriz, S.: Some New Paranormed Difference Sequence Spaces Derived by Fibonacci Numbers. Miskolc Mathematical Notes. 16 (2), 907-923 (2015).
  • [15] Kara, E. E., ˙Ilkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear and Multilinear Algebra. 64 (11), 2208-2223 (2016).
  • [16] Lascarides, C.G., Maddox, I.J.: Matrix transformations between some classes of sequences. Proc. Camb. Phil. Soc. 68, 99-104 (1970).
  • [17] Maddox, I.J.: Paranormed sequence spaces generated by infinite matrices. Proc. Cambridge Philos. Soc. 64, 335-340 (1968).
  • [18] Maddox, I.J.: Spaces of strongly summable sequences. Quart. J. Math. Oxford 18 (2), 345-355 (1967).
  • [19] Maji, A., Srivastava, P.: Some Paranormed Difference Sequence Spaces of Order m Derived by Generalized Means and Compact Operators. arXiv:1308.2667v2 (2013).
  • [20] Malkowsky, E.: Recent results in the theory of matrix transformations in sequence spaces. Mat. Vesnik 49, 187-196 (1997).
  • [21] Malkowsky, E., Rakoˇcevi´c, V.: On matrix domain of triangles. Appl. Math. Comp. 189 (2), 1146-1163 (2007).
  • [22] Nakano, H.: Modulared sequence spaces. Proc. Jpn. Acad. 27 (2) 508-512 (1951).
  • [23] Sarıgöl, M.A.: Spaces of series summable by absolute Cesàro and matrix operators. Comm. Math. Appl. 7 (1), 11-22 (2016).
  • [24] Simons, S.: The sequence spaces ` (pv) and m (pv) Proc. London Math. Soc. 15 (3), 422-436 (1965).
  • [25] Thorpe, B.: Matrix transformations of Cesàro summable Series. Acta Math. Hung. 48 (3-4), 255-265 (1986).
  • [26] Wilansky, A.: Summability Through Functional Analysis, North-Holland Mathematical Studies. vol. 85, Elsevier Science Publisher, 1984.
  • [27] Ye¸silkayagil, M., Ba¸sar, F.: On the paranormed Nörlund sequence space of nonabsolute type. Abstract and Applied Analysis. Vol. 2014, Article ID: 858704.
  • [28] Zengin Alp P., ˙Ilkhan M.: On the difference sequence space `p Tˆq . Mathematical Sciences and Applications E-Notes. 7 (2), 161-173 (2019).

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.