Yıl: 2021 Cilt: 46 Sayı: 3 Sayfa Aralığı: 608 - 620 Metin Dili: Türkçe DOI: 10.15237/gida.GD21024 İndeks Tarihi: 03-06-2021

KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ

Öz:
Bu çalışmada, Ankara’da yetiştirilen kabak çekirdeği ve Malatya’da yetiştirilen kayısı çekirdeğinden elde edilensabit yağların yağ asidi kompozisyonları ve biyoaktif özellikleri incelenmiştir. Kabak ve kayısı çekirdeğiyağlarının bileşiminde bulunan ana bileşenler linoleik ve oleik asit olarak tespit edilmiştir. Kabak ve kayısıçekirdeği yağlarının toplam fenolik madde miktarı sırasıyla 123.60 ve 86.75 mg GAE/100 g olarakbelirlenmiştir. DPPH yöntemine göre kabak ve kayısı çekirdeği yağlarının antioksidan aktivite değerlerisırasıyla %46.53 ve %39.61 iken ABTS yöntemine göre değerler %74.73 ve %49.05 olarak tespit edilmiştir.Kabak çekirdeği yağına karşı en hassas mikroorganizma Escherichia coli O157:H7 olarak tespit edilirken,Listeria monocytogenes, Enterococcus feacalis ve Salmonella Typhimurium, kayısı çekirdeği yağlarına karşı en hassasmikroorganizmalar olarak belirlenmiştir. Sonuçlar, sabit yağların gıda endüstrisinde doğal antioksidan ürünlerolarak kullanılabileceğini göstermiştir.
Anahtar Kelime:

DETERMINATION OF FATTY ACID COMPOSITION AND BIOACTIVE PROPERTIES OF PUMPKIN SEED AND APRICOT KERNEL OILS

Öz:
In the study, fatty acid compositions and bioactive properties of fixed oils obtained from seeds of pumpkin grown in Ankara and kernels of apricot grown in Malatya were investigated. The main components in the composition of pumpkin seed and apricot kernel oils were identified as linoleic and oleic acids. The total phenolic contents of pumpkin seed and apricot kernel oils were determined as 123.60 and 86.75 mg GAE/100 g, respectively. According to DPPH method, the antioxidant activities of pumpkin seed and apricot kernel oils were determined as 46.53% and 39.61%, respectively, while the values were 74.73% and 49.05% according to ABTS method. The most sensitive microorganism against pumpkin seed oil was Escherichia coli O157:H7, while Listeria monocytogenes, Enterococcus feacalis and Salmonella Typhimurium were determined as the most sensitivemicroorganisms to apricot kernel oil. The results showed that fixed oils could be used as natural antioxidant products in the food industry.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ababouch, L., Chaibi, A., Busta, F.F. (1992). Inhibition of bacterial spore growth by fatty acids and their sodium salts. J. Food Prot. 55: 980-984, doi:10.4315/0362-028X-55.12.980.
  • Ababouch, L., Bouqartacha, F., Busta, F.F. (1994). Inhibition of Bacillus cereus spores and vegetative cells by fatty acids and glyceryl monododecanoate. Food Microbiol, 55: 327-336, doi: 10.1006/fmic.1994.1037.
  • Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A., Yaqoob, S., Shabir, H., Yousaf, T., Mussarat, S., Ali, N., Khan, S.N., Rahman, H., Aziz, M.A. (2017). A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. J of Phytopharmacology, 6(2): 133-139.
  • Ali, S., Masud, T., Abbasi, K.S. (2011). Physicochemical characteristics of apricot (Prunus armeniaca L.) grown in Northern Areas of Pakistan. Sci Hortic, 130(2): 386-392, doi: 10.1016/j.scienta.2011.05.040.
  • Amiran, F., Shafaghat, A., Shafaghatlonbar, M. (2015). Omega-6 content, antioxidant and antimicrobial activities of hexanic extract from Prunus armeniaca L. kernel from North-West Iran. National Academy Science Letters, 38(2): 107- 111, doi: 10.1007/s40009-014-0284-x.
  • Badr, S.E., Shaaban, M., Elkholy, Y.M., Helal, M.H., Hamza, A.S., Masoud, M.S., El Safty, M.M. (2011). Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat Prod Res, 25(16): 1524-1539, doi: 10.1080/14786410903312991.
  • Bardaa, S., Halima, N.B., Aloui, F., Mansour, R.B., Jabeur, H., Bouaziz, M., Sahnoun, Z. (2016). Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids in Health and Disease, 15(1): 1-12, doi: 10.1186/s12944-016-0237-0.
  • Benalia, M., Djeridane, A., Gourine, N., Nia, S., Ajandouz, E., Yousfi, M. (2015). Fatty acid profile, tocopherols content and antioxidant activity of algerian pumpkin seeds oil (Cucurbita pepo L.). Med J Nutrition Metab, 8(1): 9-25, doi: 10.3233/mnm-140023.
  • Coşkun, F. (2006). Gıdalarda bulunan doğal koruyucular. Gıda Teknolojileri Elektronik Dergisi, 2: 27-33.
  • Dar, P., Farman, M., Dar, A., Khan, Z., Munir, R., Rasheed, A., Waqas, U. (2017). Evaluation of antioxidant potential and comparative analysis of antimicrobial activity of various extracts of Cucurbita pepo L. leaves. J Agric Sci Food Technol, 3: 103-109.
  • Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., Wang, D., Zhong, Y., Zhao, Y. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38: 184-191 doi: 10.1016/j.foodcont.2013.10.023.
  • Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem, 102: 966-975, doi.org/10.1016/j.foodchem.2006.04.001.
  • Dulf, F.V., Vodnar, D.C., Dulf, E.H., Pintea, A. (2017). Phenolic compounds, flavonoids, lipids and antioxidant potential of apricot (Prunus armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem Cent J, 11(1): 1-10, doi: 10.1186/s13065-017-0323-z.
  • El-Sayed, M.M., Hashash, M.M., Abdel-Hady, A.A., Abdel-Hady, H., Abdel-Lateef, E.E., Morsi, E.A. (2017). Total phenolic and flavonoid contents and antioxidant activity of Lantana camara and Cucurbita pepo (Squash) extracts as well as GC-MS analysis of Lantana camara essential oils. World J Pharm Res, 6(1): 137-153.
  • Ghaffar, F., Kainat, B., Shah, H., Akram, M. (2018). Nutritional, physico-chemical, antimicrobial and antioxidant screening of seed and seed oil of Cucurbita pepo grown in Kpk, Pakistan. FUUAST Journal of Biology, 8(1): 41-48.
  • Gohari, A.A., Farhoosh, R., Haddad, K.M. (2011). Chemical composition and physicochemical properties of pumpkin seeds (Cucurbita pepo subsp. pepo var. Styriaka) grown in Iran. J Agric Sci Technol, 13: 1053-1063.
  • Gomaa, E.Z. (2013). In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci Biotechnol, 22(2): 455-463, doi: 10.1007/s10068-013-0101-1.
  • Gupta, A., Sharma, P.C., Tilakratne, B.M.K.S., Verma, A.K. (2012). Studies on physico-chemical characteristics and fatty acid composition of wild apricot (Prunus armeniaca Linn.) kernel oil. Indian Journal of Natural Products and Resources, 3(3): 366- 370.
  • Gyawali, R., Ibrahim, S.A. (2014). Natural products as antimicrobial agents. Food Control, 46: 412-429, doi: 10.1016/j.foodcont.2014.05.047. Hashash, M.M., El-Sayed, M.M., Abdel-Hady, A.A., Hady, H.A., Morsi, E.A. (2017). Nutritional potential, mineral composition, and antioxidant activity Squash (Cucurbıta pepo L.) fruits grown in Egypt. Inflammation, 9(10): 11-12.
  • Juhaimi, F.A., Özcan, M.M., Ghafoor, K., Babiker, E.E. (2018). The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils. Food Chem, 243: 414-419, doi: 10.1016/j.foodchem.2017.09.100.
  • Kaithwas, G., Mukerjee, A., Kumar, P., Majumdar, D.K. (2011). Linum usitatissimum (linseed/flaxseed) fixed oil: antimicrobial activity and efficacy in bovine mastitis. Inflammopharmacology, 19(1): 45-52, doi: 10.1007/s10787-010-0047-3.
  • Karaca, E., Aytaç, S. (2007). Yağ bitkilerinde yağ asitleri kompozisyonu üzerine etki eden faktörler. Anadolu Tarım Bilimleri Dergisi, 22(1): 123-131.
  • Kasnak, C., Palamutoğlu, R. (2015). Doğal antioksidanların sınıflandırılması ve insan sağlığına etkileri. Turkish J Agri-Food Sci Techn 3(5): 226-234, doi: 10.24925/turjaf.v3i5.226-234.171.
  • Kiralan, M., Özkan, G., Bayrak, A., Ramadan, M.F. (2014). Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Ind Crop Prod, 57: 52-58, doi: 10.1016/j.indcrop.2014.03.026.
  • Korekar, G., Stobdan, T., Arora, R., Yadav, A., Singh, S.B. (2011). Antioxidant capacity and phenolics content of apricot (Prunus armeniaca L.) kernel as a function of genotype. Plant Foods Hum Nutr, 66(4): 376-383, doi: 10.1007/s11130-011- 0246-0.
  • Lee, H.H., Ahn, J.H., Kwon, A.R., Lee, E.S., Kwak, J.H., Min, Y.H. (2014). Chemical composition and antimicrobial activity of the essential oil of apricot seed. Phytotherapy Res, 28(12): 1867-1872, doi: 10.1002/ptr.5219.
  • Li, X.J., Li, Z.G., Wang, X., Han, J.Y., Zhang, B., Fu, Y.J., Zhao, C.J. (2016). Application of cavitation system to accelerate aqueous enzymatic extraction of seed oil from Cucurbita pepo L. and evaluation of hypoglycemic effect. Food Chem, 212: 403-410, doi: 10.1016/j.foodchem.2016.05.185.
  • Manzoor, M., Anwar, F., Ashraf, M., Alkharfy, K.M. (2012). Physico-chemical characteristics of seed oils extracted from different apricot (Prunus armeniaca L.) varieties from Pakistan. Grasas Y Aceites, 63(2): 193-201, doi: 10.3989/gya.095011.
  • Meru, G., Fu, Y., Leyva, D., Sarnoski, P., Yagiz, Y. (2018). Phenotypic relationships among oil, protein, fatty acid composition and seed size traits in Cucurbita pepo. Sci Hortic, 233: 47-53, doi: 10.1016/j.scienta.2018.01.030.
  • Morittu, V.M., Musco, N., Mastellone, V., Bonesi, M., Britti, D., Infascelli, F., Loizzo, M.R., Tundis, R., Sicari, V., Tudisco, R., Lombardi, P. (2019). In vitro and in vivo studies of Cucurbita pepo L. flowers: chemical profile and bioactivity. Nat Prod Res, 30: 1-5, doi: 10.1080/14786419.2019.1672067.
  • Nafis, A., Kasrati, A., Jamali, C. A., Custódio, L., Vitalini, S., Iriti, M., Hassani, L. (2020). A Comparative study of the in vitro antimicrobial and synergistic effect of essential oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with antimicrobial drugs: New approach for health promoting products. Antibiotics, 9(4): 140, doi: 10.3390/antibiotics9040140.
  • Naik, D.G., Dandge, C.N., Rupanar, S.V. (2011). Chemical examination and evaluation of antioxidant and antimicrobial activities of essential oil from Gymnema sylvestre R. Br. leaves. J Essent Oil Res, 23(3): 12-19, doi: 10.1080/10412905.2011.9700451.
  • Nourmohammadi, E., SadeghiMahoonak, A., Alami, M., Ghorbani, M. (2017). Amino acid composition and antioxidative properties of hydrolysed pumpkin (Cucurbita pepo L.) oil cake protein. Int J Food Prop, 20(12): 3244-3255, doi: 10.1080/10942912.2017.1283516.
  • Preuss, H.G., Echard, B., Enig, M., Brook, I., Elliott, T.B. (2005). Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria. Mol Cell Biochem, 272(1-2): 29-34, doi: 10.1007/s11010-005-6604-1.
  • Proestos, C., Boziaris, I.S., Nychas, G.J.E., Komaitis, M. (2006). Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem, 95: 664-671, doi: 10.1016/j.foodchem.2005.01.049.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26: 1231- 1237, doi: 10.1016/s0891-5849(98)00315-3.
  • Seidel, V., Taylor, P.W. (2004). In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int J Antimicrob Agents, 23:613-619, doi: 10.1016/j.ijantimicag.2003.11.008.
  • Sener, B., Orhan, I., Ozcelik, B., Kartal, M., Aslan, S., Ozbilen, G. (2007). Antimicrobial and antiviral activities of two seed oil samples of Cucurbita pepo L. and their fatty acid analysis. Natural Product Communications, 2(4): 395-398.
  • Sharma, S., Satpathy, G., Gupta, R.K. (2014). Nutritional, phytochemical, antioxidant and antimicrobial activity of Prunus armenicus. J Pharmacogn Phytochem: 3(3), 23-28. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Viticult, 16: 144-158.
  • Sójka, M., Kołodziejczyk, K., Milala, J., Abadias, M., Viñas, I., Guyot, S., Baron, A. (2015). Composition and properties of the polyphenolic extracts obtained from industrial plum pomaces. J Funct Foods, 12: 168-178, doi: 10.1016/j.jff.2014.11.015.
  • SPSS, (2011). Statistical Package, SPSS for Windows, Ver. 20.0, Chicago.
  • Sun, C.Q., O’Connor, C.J., Roberton, A.M. (2003). Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol Med Microbiol, 36:9-17, doi: 10.1016/S0928-8244(03)00008-7.
  • Tajkarimi, M.M., Ibrahim, S.A., Cliver, D.O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9): 1199-1218, doi: 10.1016/j.foodcont.2010.02.003.
  • Tomas-Menor, L., Morales-Soto, A., BarrajónCatalán, E., Roldán-Segura, C., Segura-Carretero, A., Micol, V. (2013). Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food Chem Toxicol, 55: 313-322, doi: 10.1016/j.fct.2013.01.006.
  • Türkmen, Ö., Özcan, M.M., Seymen, M., Paksoy, M., Uslu, N., Fidan, S. (2017). Physico-chemical properties and fatty acid compositions of some edible pumpkin seed genotypes and oils. J Agroaliment Processes Technol, 23(4): 229-235.
  • USP, (1995). The U.S. Pharmacopeia National Formularty. USP 23 NF 18, 1755 s.
  • Xue, J., Davidson, P.M., Zhong, Q. (2013). Thymol nanoemulsified by whey proteinmaltodextrin conjugates: the enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol. J Agric Food Chem, 61(51): 12720-12726, doi: 10.1021/jf4043437.
  • Yadav, A.K., Pal, A., Dubey, A.M. (2018). Experimental studies on utilization of Prunus armeniaca L. (wild apricot) biodiesel as an alternative fuel for CI engine. Waste and Biomass Valorization, 9(10): 1961-1969, doi: 10.1007/s12649-017-9935-8.
  • Zheng, C.J., Yoo, J.S., Lee, T.G., Cho, H.Y., Kim, Y.H., Kim, W.G. (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acid. FEBS Lett, 579:5157-5162, doi: 10.1016/j.febslet.2005.08.028.
  • Zhou, B., Wang, Y., Kang, J., Zhong, H., Prenzler, P.D. (2016). The quality and volatile‐ profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil‐ producing processes. Eur J Lipid Sci Technol, 118(2), 236-243, doi: 10.1002/ejlt.201400545.
APA Sengun I, YÜCEL E, Kılıç G, Öztürk B (2021). KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. , 608 - 620. 10.15237/gida.GD21024
Chicago Sengun Ilkin Yucel,YÜCEL Ersin,Kılıç Gülden,Öztürk Berna KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. (2021): 608 - 620. 10.15237/gida.GD21024
MLA Sengun Ilkin Yucel,YÜCEL Ersin,Kılıç Gülden,Öztürk Berna KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. , 2021, ss.608 - 620. 10.15237/gida.GD21024
AMA Sengun I,YÜCEL E,Kılıç G,Öztürk B KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. . 2021; 608 - 620. 10.15237/gida.GD21024
Vancouver Sengun I,YÜCEL E,Kılıç G,Öztürk B KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. . 2021; 608 - 620. 10.15237/gida.GD21024
IEEE Sengun I,YÜCEL E,Kılıç G,Öztürk B "KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ." , ss.608 - 620, 2021. 10.15237/gida.GD21024
ISNAD Sengun, Ilkin Yucel vd. "KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ". (2021), 608-620. https://doi.org/10.15237/gida.GD21024
APA Sengun I, YÜCEL E, Kılıç G, Öztürk B (2021). KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA, 46(3), 608 - 620. 10.15237/gida.GD21024
Chicago Sengun Ilkin Yucel,YÜCEL Ersin,Kılıç Gülden,Öztürk Berna KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA 46, no.3 (2021): 608 - 620. 10.15237/gida.GD21024
MLA Sengun Ilkin Yucel,YÜCEL Ersin,Kılıç Gülden,Öztürk Berna KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA, vol.46, no.3, 2021, ss.608 - 620. 10.15237/gida.GD21024
AMA Sengun I,YÜCEL E,Kılıç G,Öztürk B KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. 2021; 46(3): 608 - 620. 10.15237/gida.GD21024
Vancouver Sengun I,YÜCEL E,Kılıç G,Öztürk B KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. 2021; 46(3): 608 - 620. 10.15237/gida.GD21024
IEEE Sengun I,YÜCEL E,Kılıç G,Öztürk B "KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ." GIDA, 46, ss.608 - 620, 2021. 10.15237/gida.GD21024
ISNAD Sengun, Ilkin Yucel vd. "KABAK VE KAYISI ÇEKİRDEĞİ YAĞLARININ YAĞ ASİDİ KOMPOZİSYONU, BİYOAKTİF ÖZELLİKLERİNİN BELİRLENMESİ". GIDA 46/3 (2021), 608-620. https://doi.org/10.15237/gida.GD21024