Yıl: 2021 Cilt: 46 Sayı: 2 Sayfa Aralığı: 428 - 442 Metin Dili: Türkçe DOI: 10.15237/gida.GD20141 İndeks Tarihi: 03-06-2021

PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ

Öz:
İnsan gastrointestinal kanalı (GIT), sindirimde, immünolojide ve bazı hastalıkların oluşumunda önemli roloynayan zengin, karmaşık bir mikrobiyota içerir. Normal şartlar altında, bağırsak mikrobiyotasının bileşimikararlıdır. Ancak diyetteki değişiklikler, bazı ilaçların kullanımı ve stres gibi faktörler nedeniylemikrobiyotanın bileşimi değişebilir. Bağırsak mikrobiyotasını düzenlemek amacıyla yeterli miktardaalındıklarında konağa fayda sağlayan bakteri ve maya gibi canlı mikroorganizmalar olarak tanımlananprobiyotiklerin, gıda şeklinde ya da gıda takviyesi olarak alınması günümüzde yaygın ve bilinen bir yöntemdir.Son yıllarda, cansız (inaktif) mikroorganizmalar olan paraprobiyotiklerin veya canlı bakterilerden salınan yada bakteriyel parçalanma sonrasında ortaya çıkan metabolik yan ürünler olan postbiyotiklerin, probiyotikleryerine alternatif olarak kullanımı söz konusudur. Paraprobiyotik ve postbiyotikler uygulandıkları konakçıdatıpkı probiyotikler gibi başta bağırsak sağlığını düzenleme ve immün sistemini güçlendirme gibi birçok sağlıketkileri göstermektedir. Bu çalışmada, probiyotikler yerine kullanılabilecek ve benzer sağlık etkilerisağlayabilen paraprobiyotikler ve postbiyotikler ile ilgili çalışmalar derlenmiştir.
Anahtar Kelime:

PARAPROBIOTICS, POSTBIOTICS AND THEIR EFFECTS ON HEALTH

Öz:
The human gastrointestinal tract (GIT) contains a rich, complex microbiota that plays an important role in digestion, immunology, and the occurrence of certain diseases. Under normal conditions, the composition of the gut microbiota is stable. However, the composition of the microbiota may change due to changes in diet, use of certain medications and stress. Today, it is a common and known method to take probiotics, which are defined as living microorganisms such as bacteria, yeast, when taken in sufficient quantities to regulate the intestinal microbiota, in the form of food or as a food supplement. In recent years, the use of paraprobiotics, which are non-living (inactive) microorganisms, or postbiotics, which are metabolic by-products released from living bacteria or after bacterial degradation, have started to attract attention as an alternative to probiotics.Paraprobiotics and postbiotics demonstrate many health effects such as regulating intestinal health and strengthening the immune system, just like probiotics, in the hosts where they are applied. In this study, studies on paraprobiotics and postbiotics that can be used instead of probiotics and provide similar health effects are reviewed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Aguilar-Toalá, J.E., Estrada-Montoya, M.C., Liceaga, A.M., Garcia, H.S., González-Aguilar, G.A., Vallejo-Cordoba, B., vd. (2019). An insight on antioxidant properties of the intracellular content of Lactobacillus casei CRL-431. LWTFood Sci Technol, 102: 58-63, doi: 10.1016/j.lwt.2018.12.015.
  • Aguilar-Toalá, J.E., Garcia-Varela, R., Garcia, H.S., Mata-Haro, V., González-Córdova, A.F., Vallejo-Cordoba, B., Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol, 75:105-114, doi: 10.1016/j.tifs.2018.03.009.
  • Anonymous (2006). Türk Gıda Kodeksi. Gıda Maddelerinin Genel Etiketleme ve Beslenme Yönünden Etiketleme Kuralları Tebliğinde Değişiklik Yapılması Hakkında Tebliğ (2006/34). Tarım ve Köyişleri Bakanlığı. 7 Temmuz 2006 tarih ve 26221 sayılı Resmî Gazete, Ankara.
  • Arai, S., Iwabuchi, N., Takahashi, S., Xiao, J.-Z., Abe, F., Hachimura, S. (2018). Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PloS one, 13(6): 0199018, doi: 10.1371/journal.pone.0199018.
  • Asama, T., Kimura, Y., Kono, T., Tatefuji, T., Hashimoto, K., Benno, Y. (2016). Effects of heatkilled Lactobacillus kunkeei YB38 on human intestinal environment and bowel movement: a pilot study. Benef Microbes, 7(3): 337-44, doi: 10.3920/BM2015.0132.
  • Ashwini, A., Ramya, H.N., Ramkumar, C., Reddy, K.R., Kulkarni, R.V., Abinaya, V., Raghu, 362 A.V. (2019). Reactive mechanism and the applications of bioactive prebiotics for human 363 health. J Microbiol Methods, 159, 128-137. doi: 10.1016/j.mimet.2019.02.019
  • Balzaretti, S., Taverniti, V., Guglielmetti, S., Fiore, W., vd. (2017). A novel rhamnose-rich heteroexopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. J Appl Environ Microbiol 83(3): e02702-02716, doi: 10.1128/AEM.02702-16.
  • Baothman, O. A., Zamzami, M. A., Taher, I., Abubaker, J., Abu-Farha, M. (2016). The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis, 15(1): 1-8, doi: 10.1186/s12944-016-0278-4.
  • Bektas, A., Ulusoy, M., Bektaş, V. (2020a). Gıda etiketlerinde yer alan bilgilerin sağlıklı algılanma (health halo) etkisi. GIDA, 45(3): 590-599, doi: 10.15237/gida.GD20045.
  • Bektaş, A., Ulusoy, M., Bektaş V. (2020b). Gıda Takviyesi Olarak Probiyotik, Paraprobiyotik, Postbiyotik ve Prebiyotiklerin Sağlık Üzerine Etkileri. Türkiye 13.Gıda Kongresi, 21-23 Ekim 2020, Çanakkale, Türkiye, 20 s.
  • Buran, İ. (2020). Probiyotik ve Prebiyotiklerin Sinbiyotik Kullanımının İnek ve Keçi Sütünden Üretilen Kefirlerin Kalite Özellikleri Üzerine Etkisi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Ankara, Türkiye, 175 s.
  • Cavallari, J. F., Fullerton, M. D., Duggan, B., vd. (2017). Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metab, 25: 1–12, doi: 10.1016/j.cmet.2017.03.021.
  • Chiu, Y.-H., Lu, Y.-C., Ou, C.-C., Lin, S.-L., Tsai, C.-C., Huang, C.-T. (2013). Lactobacillus plantarum MYL26 induces endotoxin tolerance phenotype in Caco-2 cells. BMC Microbiol,, 13:1-9, doi: 10.1186/1471-2180-13-190.
  • Chuah, L.O., Foo, H.L., Loh, T.C., Mohammed Alitheen, N.B., vd. (2019). Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med, 19(1): 114, doi: 10.1186/s12906-019-2528-2.
  • Collado, M.C., Vinderola, G., Salminen, S. (2019). Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Beneficial Microbes, 10(7): 711-719, doi: 10.3920/BM2019.0015.
  • Cicenia, A., Santangelo, F., Gambardella, L., Pallotta, L., Iebba, V., Scirocco, A., vd. (2016). Protective role of postbiotic mediators secreted by Lactobacillus rhamnosus GG versus lipopolysaccharide-induced damage in human colonic smooth muscle cells. J Clin Gastroenterol, 50: 140–144, doi: 10.1097/MCG.0000000000000681.
  • Cuevas-González, P.F., Aguilar-Toalá, J.E., García, H.S., González-Córdova, A.F., VallejoCordoba, B., Hernández-Mendoza, A. (2020). Protective effect of the intracellular content from potential probiotic bacteria against oxidative damage induced by acrylamide in human erythrocytes. Probiotics Antimicrob Proteins, 12(4):1459-1470, doi: 10.1007/s12602-020- 09636-9.
  • de Almada, C. N., Almada, C. N., Martinez, R. C. R., Sant'Ana, A. S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol, 58: 96-114, doi: 10.1016/j.tifs.2016.09.011.
  • de Oliveira Coelho, B., Fiorda-Mello, F., de Melo Pereira, G. V., Thomaz-Soccol, V., vd. (2019). In vitro probiotic properties and DNA protection activity of yeast and lactic acid bacteria isolated from a honey-based kefir beverage. Foods, 8(10): 485, doi: 10.3390/foods8100485.
  • de Servi, B., Ranzini, F. (2017). Protective efficacy of antidiarrheal agents in a permeability model of Escherichia coli-infected CacoGoblet® cells. Future Microbiol, 12(16): 1449-1455, doi: 10.2217/fmb-2016-0195.
  • Dunand, E., Burns, P., Binetti, A., Bergamini, C., Peralta, vd. (2019). Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. J Appl Microbiol, 127(1): 219-229, doi: 10.1111/jam.14276.
  • Fujiki, T., Hirose, Y., Yamamoto, Y., Murosaki, S. (2012). Enhanced Immunomodulatory Activity and Stability in Simulated Digestive Juices of Lactobacillus plantarum L-137 by Heat Treatment. Biosci Biotechnol Biochem, 76(5): 918– 922, doi: 10.1271/bbb.110919.
  • Fujiwara, H., Docampo, M.D., Riwes, M., vd. (2018). Microbial metabolite sensor GPR43 controls severity of experimental GVHD. Nat Comm, 9(1):3674., doi: 10.1038/s41467-018- 06048-w.
  • Generoso, S.V., Viana, M.L., Santos, R.G., Arantes, R.M.E., Martins, F.S., Nicoli, J.R. (2011). Protection against increased intestinal permeability and bacterial translocation induced by intestinal obstruction in mice treated with viable and heat-killed Saccharomyces boulardii. Eur J Nutr, 50: 261-269, doi: 10.1007/s00394- 010-0134-7.
  • Harima-Mizusawa, N., Kano, M., Nozaki, D., Nonaka, C., Miyazaki, K., Enomoto, T. (2016). Citrus juice fermented with Lactobacillus plantarum YIT 0132 alleviates symptoms of perennial allergic rhinitis in a double-blind, placebo-controlled trial. Benef Microbes. 30; 7(5): 649-658, doi: 10.3920/BM2016.0003.
  • Imaoka, A., Shima, T., Kato, K., Mizuno, S., Uehara, T., Matsumoto, S. (2008). Antiinflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol, 14: 2511-2516, doi: 10.3748/wjg.14.2511.
  • Iraporda, C., Errea, A., Romanin, D.E., Cayet, D., Pereyra, E., Pignataro, O., Sirard, J.C., Garrote, G.L., Abraham, A.G., Rumbo, M. (2015). Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology, 220: 1161-1169, doi: 10.1016/j.imbio.2015.06.004.
  • Iwasaki, K., Maeda, K., Hidaka, K., Nemoto, K., Hirose, Y., Deguchi, S. (2016). Daily Intake of Heat-killed Lactobacillus plantarum L-137 Decreases the Probing Depth in Patients Undergoing Supportive Periodontal Therapy. Oral Health Prev Dent,14(3):207-14, doi: 10.3290/j.ohpd.a36099.
  • Jin, J, Wu, S., Xie, Y., Liu, H., Gao, X., Zhang, H. (2020). Live and heat-killed cells of Lactobacillus plantarum Zhang-LL ease symptoms of chronic ulcerative colitis induced by dextran sulfate sodium in rats. J Funct Foods, 71: 103994, doi: 10.1016/j.jff.2020.103994.
  • Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S., Pal, P. (2015). Inactivated Probiotic Bacteria Stimulate Cellular Immune Responses of Catla, Catla catla (Hamilton) In Vitro. Probiotics Antimicrob Proteins, 7(2):101-106, doi: 10.1007/s12602-015-9191-9.
  • Kamiya, T., Wang, L., Forsythe, P., Goettsche, G., Mao, Y., Wang, Y. (2006). Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut, 55: 191-196, doi: 10.1136/gut.2005.070987.
  • Karimi Ardestani, S., Tafvizi, F., Tajabadi Ebrahimi, M. (2019). Heat-killed probiotic bacteria induce apoptosis of HT-29 human colon adenocarcinoma cell line via the regulation of Bax/Bcl2 and caspases pathway. Hum Exp Toxicol, 38(9): 1069-1081, doi: 10.1177/0960327119851255.
  • Kawase, M., He, F., Miyazawa, K., Kubota, A., Yoda, K., Hiramatsu, M. (2012). Orally administered heat-killed Lactobacillus gasseri TMC0356 can upregulate cell-mediated immunity in senescence-accelerated mice. FEMS Microbiol Lett, 326: 125-130, doi: 10.1111/j.1574- 6968.2011.02440.x.
  • Kim, H., Jeon, B., Kim, W.J., Chung, D-K. (2020). Effect of paraprobiotic prepared from KimchiderivedLactobacillusplantarumK8 on skin moisturizing activity in human keratinocyte. J Funct Foods, 75: 104244, doi: 10.1016/j.jff.2020.104244.
  • Kimoto-Nira, H., Mizumachi, K., Okamoto, T., Sasaki, K., Kurisaki, J. (2009). Influence of longterm consumption of a Lactococcus lactis strain on the intestinal immunity and intestinal flora of the senescence-accelerated mouse. Br J Nutr, 102: 181-185, doi: 10.1017/S0007114508143574.
  • Kimoto-Nira, H., Suzuki, C., Kobayashi, M., Sasaki, K., Kurisaki, J., Mizumachi, K. (2007). Anti-ageing effect of a lactococcal strain: Analysis using senescence-accelerated mice. Br J Nutr, 98: 1178–1186, doi: 10.1017/S0007114507787469.
  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6): 1332-1345, doi: 10.1016/j.cell.2016.05.041.
  • Komano, Y., Shimada, K., Naito, H., Fukao, K., Ishihara, Y., Fujii, T., Kokubo, T., Daida, H. (2018). Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. J Int Soc Sports Nutr, 2;15(1): 39, doi: 10.1186/s12970-018-0244-9.
  • Lee, M., J., Zang, Z.L., Choi, E.Y., Shin, H.K., Ji, G.E. (2002). Cytoskeleton Reorganization and Cytokine Production of Macrophages by Bifidobacterial Cells and Cell- Free Extracts. J Microbiol Biotechnol, 12(3): 398-405.
  • Maehata, H., Kobayashi, Y., Mitsuyama, E., Kawase, T., Kuhara, vd. (2019). Heat-killed Lactobacillus helveticus strain MCC1848 confers resilience to anxiety or depression-like symptoms caused by subchronic social defeat stress in mice. Biosci Biotechnol Biochem, 83(7): 1239-1247, doi: 10.1080/09168451.2019.1591263.
  • Maghsood, F., Johari, B., Rohani, M., Madanchi, H., Saltanatpour, Z., Kadivar, M. (2020). Antiproliferative and anti-metastatic potential of high molecular weight secretory molecules from probiotic Lactobacillus reuteri cell-free supernatant against human colon cancer stem-like cells (HT29-ShE). Int J Peptide Res Therapeut, 26: 2619–2631, doi: 10.1007/s10989-020-10049-z.
  • Malashree, L., Vishwanath, A., Shivalkar, Y., Prabha, R. (2019). “Postbiotics” - One Step Ahead of Probiotics. Int J Curr Microbiol Appl Sci, 8(01): 2319-7706, doi: 10.20546/ijcmas.2019.801.214.
  • Marcial, G., Villena, J., Faller, G., Hensel, A., de Valdéz, G.F. (2017). Exopolysaccharideproducing Streptococcus thermophilus CRL1190 reduces the inflammatory response caused by Helicobacter pylori. Benef Microbes, 30;8(3): 451- 461, doi: 10.3920/BM2016.0186.
  • Martín, R., Langella, P. (2019). Emerging health concepts in the probiotics field: Streamlining the definitions. Front Microbiol, 10: 1047, doi: 10.3389/fmicb.2019.01047.
  • Mathewson, N., Jenq, R., Mathew, A., vd. (2016). Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graftversus-host disease. Nat Immunol, 17: 505–513, doi: 10.1038/ni.3400.
  • Moradi, M., Mardani, K., Tajik, H. (2019). Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT- Food Sci Technol, 111: 457-464, doi: 10.1016/j.lwt.2019.05.072.
  • Moroi, M., Uchi, S., Nakamura, K., Sato, S., vd. (2011). Beneficial effect of a diet containing heatkilled Lactobacillus paracasei K71 on adult type atopic dermatitis. J Dermatol, 38(2):131-9, doi: 10.1111/j.1346-8138.2010.00939.x.
  • Nakamura F, Ishida Y, Sawada D, vd. (2016). Fragmented Lactic Acid Bacterial Cells Activate Peroxisome Proliferator-Activated Receptors and Ameliorate Dyslipidemia in Obese Mice. J Agric Food Chem, 64(12): 2549-2559, doi: 10.1021/acs.jafc.5b05827.
  • Nataraj, B. H., Ali, S. A., Behare, P. V., Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact, 19(1),: 1-22, doi: 10.1186/s12934- 020-01426-w.
  • Nishida, K., Sawada, D., Kawai, T., Kuwano, Y., Sugawara, T., Rokutan, K. (2017a). Parapsychobiotic Lactobacillus gasseri CP2305 ameliorates stress-related symptoms and sleep quality. J Appl Microbiol, 123(6): 1561-1570, doi: 10.1111/jam.13594.
  • Nishida, K., Sawada, D., Kuwano, Y., Tanaka, H., Sugawara, T., Aoki, Y., Fujiwara, S., Rokutan, K. (2017b). Daily administration of paraprobiotic Lactobacillus gasseri CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students. J Funct Foods, 36: 112–121, doi: 10.1016/j.jff.2017.06.031.
  • Nozari, S., Faridvand, Y., Etesami, A., Ahmad Khan Beiki, M., Miresmaeili Mazrakhondi, S. A., Abdolalizadeh, J. (2019). Potential anticancer effects of cell wall protein fractions from 29 Lactobacillus paracasei on human intestinal Caco2 cell line. Lett Appl Microbiol, 69(3): 148-154, doi: 10.1111/lam.13198.
  • Obata, Y., Pachnis, V. (2016). The effect of microbiota and immune system on the development and organization of the enteric nervous system. Gastroenterology, 151: 836–844, doi: 10.1053/j.gastro.2016.07.044.
  • Omarov, T. R., Omarova, L. A., Omarova, V. A., Sarsenova, S. V. (2014). The chronic gastritis, the dysbacteriosis and the use of Hylak forte at the treatment. Wiad Lek, 67(2 Pt 2): 365-7.
  • Ou, C-C., Lin, S-L., Tsai, J-J., Lin, M-Y. (2011). Heat‐Killed Lactic Acid Bacteria Enhance Immunomodulatory Potential by Skewing the Immune Response toward Th1 Polarization. J Food Sci,76(5): 260-267, doi: 10.1111/j.1750- 3841.2011.02161.x.
  • Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A., Brown, P.O. (2007). Development of the human infant intestinal microbiota. PLoS Biol, 5(7): e177, doi: 10.1371/journal.pbio.0050177.
  • Posadas, G. A., Broadway, P. R., Thornton, J. A., Carroll, J. A., Lawrence, A., vd. (2017). Yeast Proand Paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease1. Translational Anim Sci, 1(1): 60-68, doi: 10.2527/tas2016.0007.
  • Postler, T.S., Ghosh, S. (2017). Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab, 26(1): 110-130, doi: 10.1016/j.cmet.2017.05.008.
  • Qi, S. R., Cui, Y. J., Liu, J. X., Luo, X., Wang, H. F. (2020). Lactobacillus rhamnosus GG components, SLP, gDNA and CpG, exert protective effects on mouse macrophages upon lipopolysaccharide challenge. Lett Appl Microbiol, 70(2): 118-127, doi: 10.1111/lam.13255.
  • Rampengan, N.H., Manoppo, J., Warouw, S.M. (2010). Comparison of efficacies between live and killed probiotics in children with lactose malabsorption. Southeast Asian J Trop Med Public Health, 41: 474-481.
  • Riaz Rajoka, M.S., Zhao, H., Mehwish, H.M., Li, N., vd. (2019). Anti-tumor potential of cell free culture supernatant of Lactobacillus rhamnosus strains isolated from human breast milk. Food Res Int. 123:286-297, doi: 10.1016/j.foodres.2019.05.002.
  • Riwes, M., Reddy, P. (2020). Short chain fatty acids: Postbiotics/metabolites and graft versus host disease colitis. Semin Hematol, 57: 1-6., doi: 10.1053/j.seminhematol.2020.06.001.
  • Sampson, T.R., Mazmanian, S.K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host Microbe, 17(5): 565–576, doi: 10.1016/j.chom.2015.04.011.
  • Sawada, D., Kuwano, Y., Tanaka, H., Hara, H., Uchiyama, Y., vd. (2019). Daily intake of Lactobacillus gasseri CP2305 relieves fatigue and stressrelated symptoms in male university Ekiden runners: A double-blind, randomized, and placebo-controlled clinical trial. J Funct Foods, 57: 465–476, doi: 10.1016/j.jff.2019.04.022.
  • Sawada, D., Sugawara, T., Ishida, Y., Aihara, K., Aoki, Y., Takehara, I., Takano, K. and Fujiwara, S. (2016). Effect of continuous ingestion of a beverage prepared with Lactobacillus gasseri CP2305 inactivated by heat treatment on the regulation of intestinal function. Food Res Int, 79: 33–39, doi: 10.1016/j.foodres.2015.11.032.
  • Sañudo, A.I., Luque, R., Díaz-Ropero, M.P., Fonollá, J., Bañuelos, Ó. (2017). In vitro and in vivo anti-microbial activity evaluation of inactivated cells of Lactobacillus salivarius CECT 5713 against Streptococcus mutans. Arch Oral Biol, 84: 58-63, doi: 10.1016/j.archoralbio.2017.09.014.
  • Segawa, S., Wakita, Y., Hirata, H., Watari, J. (2008). Oral administration of heat killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing dietfed C57BL/6N mice. Int J Food Microbiol, 128: 371- 377, doi: 10.1016/j.ijfoodmicro.2008.09.023.
  • Sharma, M. Shukla, G. (2016). Metabiotics: one step ahead of porobiotics; an insight into mechanism involved in anticarcinogenic effect in colorectal cancer. Front Microbiol, 7: 1940, doi: 10.3389/fmicb.2016.01940.
  • Shenderov, B.A., Sinitsa, A.V., Zakharchenko, M.M., Lang, C. (2020). Methods and techniques used for obtaining and identifying of microbial low molecular weight cellular compounds, metabolites and signaling molecules. In: Metabiotics, Springer, Cham, Switzerland, pp. 55- 56, Online ISBN: 978-3-030-34167-1, doi: 10.1007/978-3-030-34167-1_11.
  • Singhi, S. C., Kumar, S. (2016). Probiotics in critically ill children. F1000 Faculty Rev, 5: 407, doi: 10.12688/f1000research.7630.1.
  • Song, M.W., Chung, Y., Kim, K-T., Hong, W.S., Chang, H.J., Paik, H.D. (2020). Probiotic characteristics of Lactobacillus brevis B13-2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells. LWT, 128: 109452, doi: 10.1016/j.lwt.2020.109452.
  • Tanzer, J.M., Thompson, A., Lang, C., Cooper, B., Hareng, L., Gamert, A., Reindl, A., Pompejus, M. (2010). Caries Inhibition by and Safety of Lactobacillus paracasei DSMZ16671. J Dent Res, 89(9): 921-6, doi: 10.1177/0022034510369460.
  • Tiptiri-Kourpeti, A., Spyridopoulou, K., Santarmaki, V., Aindelis, G., Tompoulidou, E., Lamprianidou, E.E. (2016). Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL. in colon carcinoma cells. PLoS One, 11(2):, e0147960, doi: 10.1371/journal.pone.0147960.
  • Ueno, N., Fujiya, M., Segawa, S., Nata, T., Moriichi, K., Tanabe, H. (2011). Heat killed body of lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm Bowel Dis, 17: 2235-2250, doi: 10.1002/ibd.21597.
  • Varian, B. J., Poutahidis, T., DiBenedictis, B.T., Levkovich, T., vd. (2017). Microbial lysate upregulates host oxytocin. Brain Behav Immun, 61: 36-49, doi: 10.1016/j.bbi.2016.11.002.
  • Warda, A.K., Rea, K., Fitzgerald, P., Hueston, C., Gonzalez-Tontuero, E., Dinan, T.G., Hill, C. (2019). Heat-killed lactobacilli alter both microbiota composition and behaviour. Behav Brain Res, 362, 213-223, doi: 10.1016/j.bbr.2018.12.047.
  • Wegh, C., Geerlings, S. Y., Knol, J., Roeselers, G., Belzer, C. (2019). Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci, 20(19): 4673, doi: 10.3390/ijms20194673.
  • Wei, C.L., Wang, S., Yen, J.T., Cheng, Y.F., vd. (2019). Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Res, 15;1711:202-213, doi: 10.1016/j.brainres.2019.01.025.
  • West, R., Roberts, E., Sichel, L.S., Sichel, J. (2013). Improvements in gastrointestinal symptoms among children with autism spectrum disorder receiving the Delpro® Probiotic and immunomodulator formulation. J Probiotics Health, 1: 102, doi: 10.4172/2329-8901.1000102.
  • Wu, X., Wu, Y., He, L., Wu, L., Wang, X. and Liu, Z. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer, 9: 2510-2517, doi: 10.7150/jca.25324.
  • Yangılar, F. (2015). Probiyotik mikroorganizmaların biyokoruyucu özelliği. Uludağ University Journal of The Faculty of Engineering, 20(1):119-130, doi: 10.17482/uujfe.16850.
  • Young, V.B. (2017). The role of the microbiome in human health and disease: an introduction for clinicians. BMJ, 356: j831, doi: 10.1136/bmj.j831.
  • Zeng, J., Jiang, J., Zhu, W., Chu, Y. (2015). Heatkilled yogurt-containing lactic acid bacteria prevent cytokine-induced barrier disruption in human intestinal Caco-2 cells. Ann Microbiol, 66:171–178, doi: 10.1007/s13213-015-1093-2.
APA Uğur E, Apaydın Kaya Ç, ulusoy m, ÖNER HALKMAN Z (2021). PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. , 428 - 442. 10.15237/gida.GD20141
Chicago Uğur Esra,Apaydın Kaya Çiğdem,ulusoy meltem,ÖNER HALKMAN Zübeyde PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. (2021): 428 - 442. 10.15237/gida.GD20141
MLA Uğur Esra,Apaydın Kaya Çiğdem,ulusoy meltem,ÖNER HALKMAN Zübeyde PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. , 2021, ss.428 - 442. 10.15237/gida.GD20141
AMA Uğur E,Apaydın Kaya Ç,ulusoy m,ÖNER HALKMAN Z PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. . 2021; 428 - 442. 10.15237/gida.GD20141
Vancouver Uğur E,Apaydın Kaya Ç,ulusoy m,ÖNER HALKMAN Z PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. . 2021; 428 - 442. 10.15237/gida.GD20141
IEEE Uğur E,Apaydın Kaya Ç,ulusoy m,ÖNER HALKMAN Z "PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ." , ss.428 - 442, 2021. 10.15237/gida.GD20141
ISNAD Uğur, Esra vd. "PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ". (2021), 428-442. https://doi.org/10.15237/gida.GD20141
APA Uğur E, Apaydın Kaya Ç, ulusoy m, ÖNER HALKMAN Z (2021). PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. GIDA, 46(2), 428 - 442. 10.15237/gida.GD20141
Chicago Uğur Esra,Apaydın Kaya Çiğdem,ulusoy meltem,ÖNER HALKMAN Zübeyde PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. GIDA 46, no.2 (2021): 428 - 442. 10.15237/gida.GD20141
MLA Uğur Esra,Apaydın Kaya Çiğdem,ulusoy meltem,ÖNER HALKMAN Zübeyde PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. GIDA, vol.46, no.2, 2021, ss.428 - 442. 10.15237/gida.GD20141
AMA Uğur E,Apaydın Kaya Ç,ulusoy m,ÖNER HALKMAN Z PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. GIDA. 2021; 46(2): 428 - 442. 10.15237/gida.GD20141
Vancouver Uğur E,Apaydın Kaya Ç,ulusoy m,ÖNER HALKMAN Z PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ. GIDA. 2021; 46(2): 428 - 442. 10.15237/gida.GD20141
IEEE Uğur E,Apaydın Kaya Ç,ulusoy m,ÖNER HALKMAN Z "PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ." GIDA, 46, ss.428 - 442, 2021. 10.15237/gida.GD20141
ISNAD Uğur, Esra vd. "PARAPROBİYOTİKLER, POSTBİYOTİKLER VE SAĞLIK ÜZERİNE ETKİLERİ". GIDA 46/2 (2021), 428-442. https://doi.org/10.15237/gida.GD20141