Yıl: 2020 Cilt: 28 Sayı: 1 Sayfa Aralığı: 1 - 8 Metin Dili: İngilizce İndeks Tarihi: 04-06-2021

THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS

Öz:
In this study, impedance responses of a lithium-ion battery and a nickel metal-hydride battery were analyzed as a function of different state of charge conditions. The physical parameters of these widely used rechargeable batteries have been extracted through an equivalent circuit model by fitting impedance data. The fit was excellent. The regressed parameters explain the battery physics and dynamics well. Results show that the developed model could be utilized for the broadly used rechargeable batteries at their operational potentials. The electrochemical impedance spectroscopy is a beneficial technique to provide information regarding battery life, battery performance, and state of health of a battery.
Anahtar Kelime:

LİTYUM İYON VE NİKEL METAL HİDRİT PİLİNİN FARKLI ŞARJ DURUMLARINDA ELEKTROKİMYASAL EMPEDANS DAVRANIŞININ KARŞILAŞTIRILMASI

Öz:
Bu çalışmada, bir lityum-iyon pili ve bir nikel metal hidrit pilinin empedans cevapları farklı şarj durumlarının bir fonksiyonu olarak analiz edilmiştir. Oldukça yaygın olarak kullanılan tekrar şarj edilebilir bu pillere ait fiziksel parametreler empedans verilerinin eşdeğer devre modeline uymasıyla elde edilmiştir. Model ile veriler mükemmel bir şekilde uyum göstermişlerdir. Regresyon analizi ile elde edilen parametreler bataryaların durumunu ve dinamiklerini iyi bir şekilde açıklamaktadır. Sonuçlar geliştirilen modelin tekrar şarj edilebilir pillerin çalışma potansiyelleri için kullanılabileceğini göstermektedir. Elektrokimyasal empedans spektroskopisi batarya ömrü, batarya performansı ve bataryanın fayda durumu ile ilgili bilgiler veren faydalı bir tekniktir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bruen, T., & Marco, J. (2016). Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. Journal of Power Sources, 310, 91-101. doi: https://doi.org/10.1016/j.jpowsour.2016.01.001
  • Castano-Solis, S., Serrano-Jimenez, D., Gauchia, L., & Sanz, J. (2017). The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs. Energies, 10(3). doi: https://doi.org/10.3390/en10030273
  • Cruz-Manzo, S., Greenwood, P., & Chen, R. (2017). An impedance model for EIS analysis of nickel metal hydride batteries. Journal of The Electrochemical Society, 164(7), A1446-A1453. doi: https://doi.org/10.1149/2.0431707jes
  • Ecker, M., Tran, T. K. D., Dechent, P., Käbitz, S., Warnecke, A., & Sauer, D. U. (2015). Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery. Journal of The Electrochemical Society, 162(9), A1836-A1848. doi: https://doi.org/10.1149/ 2.0541509jes
  • Fleischer, C., Waag, W., Heyn, H.-M., & Sauer, D. U. (2014). On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models. Journal of Power Sources, 260, 276-291. doi: https://doi.org/10.1016/ j.jpowsour.2014.01.129
  • Galeotti, M., Cinà, L., Giammanco, C., Cordiner, S., & Di Carlo, A. (2015). Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. Energy, 89, 678-686. doi: https://doi.org/10.1016/j.energy.2015.05.148
  • Gomez, J., Nelson, R., Kalu, E. E., Weatherspoon, M. H., & Zheng, J. P. (2011). Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects. Journal of Power Sources, 196(10), 4826-4831. doi: https://doi.org/10.1016 /j.jpowsour.2010.12.107
  • Gong, X., Xiong, R., & Mi, C. C. (2015). Study of the Characteristics of Battery Packs in Electric Vehicles With Parallel-Connected Lithium-Ion Battery Cells. IEEE Transactions on Industry Applications, 51(2), 1872-1879. doi: https://doi.org/10.1109/ tia.2014.2345951
  • Hang, T., Mukoyama, D., Nara, H., Takami, N., Momma, T., & Osaka, T. (2013). Electrochemical impedance spectroscopy analysis for lithium-ion battery using Li4Ti5O12 anode. Journal of Power Sources, 222, 442-447. doi: https://doi.org/10.1016/ j.jpowsour.2012.09.010
  • Huang, J., Li, Z., Liaw, B. Y., & Zhang, J. (2016). Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. Journal of Power Sources, 309, 82-98. doi: https://doi.org/10.1016/j.jpowsour.2016.01.073
  • Itagaki, M., Honda, K., Hoshi, Y., & Shitanda, I. (2015). In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle. Journal of Electroanalytical Chemistry, 737, 78-84. doi: https://doi.org/ 10.1016/j.jelechem.2014.06.004
  • Jaguemont, J., Boulon, L., & Dube, Y. (2016). Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low Temperatures. IEEE Transactions on Vehicular Technology, 65(1), 1-14. doi: https://doi.org/ 10.1109/tvt.2015.2391053
  • Jaguemont, J., Boulon, L., & Dube, Y. (2016). A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 164, 99-114. doi: https://doi.org/10.1016/j.apenergy.2015.11.034
  • Leng, F., Wei, Z., Tan, C. M., & Yazami, R. (2017). Hierarchical degradation processes in lithium-ion batteries during ageing. Electrochimica Acta, 256, 52-62. doi: https://doi.org/10.1016/ j.electacta.2017.10.007
  • Moralı, U., & Erol, S. (2020). 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 297-310. doi: https://doi.org/10.17341/ gazimmfd.463280
  • Nelatury, S. R., & Singh, P. (2004). Equivalent circuit parameters of nickel/metal hydride batteries from sparse impedance measurements. Journal of Power Sources, 132(1-2), 309-314. doi: https://doi.org/10.1016/j.jpowsour.2003.12.013
  • Orazem, M. E., & Tribollet, B. (2017). Electrochemical impedance spectroscopy. New Jersey, USA: John Wiley & Sons.
  • Raijmakers, L. H. J., Danilov, D. L., van Lammeren, J. P. M., Lammers, M. J. G., & Notten, P. H. L. (2014). Sensorless battery temperature measurements based on electrochemical impedance spectroscopy. Journal of Power Sources, 247, 539-544. doi: https://doi.org/10.1016/j.jpowsour.2013.09.005
  • Westerhoff, U., Kurbach, K., Lienesch, F., & Kurrat, M. (2016). Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy. Energy Technology, 4(12), 1620-1630. doi: https://doi.org/10.1002/ente.201600154
  • Xie, Y., Li, J., & Yuan, C. (2014). Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling. Electrochimica Acta, 127, 266-275. doi: https://doi.org/10.1016/ j.electacta.2014.02.035
APA moralı u, Erol S (2020). THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. , 1 - 8.
Chicago moralı ugur,Erol Salim THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. (2020): 1 - 8.
MLA moralı ugur,Erol Salim THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. , 2020, ss.1 - 8.
AMA moralı u,Erol S THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. . 2020; 1 - 8.
Vancouver moralı u,Erol S THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. . 2020; 1 - 8.
IEEE moralı u,Erol S "THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS." , ss.1 - 8, 2020.
ISNAD moralı, ugur - Erol, Salim. "THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS". (2020), 1-8.
APA moralı u, Erol S (2020). THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), 28(1), 1 - 8.
Chicago moralı ugur,Erol Salim THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online) 28, no.1 (2020): 1 - 8.
MLA moralı ugur,Erol Salim THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), vol.28, no.1, 2020, ss.1 - 8.
AMA moralı u,Erol S THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online). 2020; 28(1): 1 - 8.
Vancouver moralı u,Erol S THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online). 2020; 28(1): 1 - 8.
IEEE moralı u,Erol S "THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS." Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), 28, ss.1 - 8, 2020.
ISNAD moralı, ugur - Erol, Salim. "THE COMPARISON OF ELECTROCHEMICAL IMPEDANCE BEHAVIORS OF LITHIUM-ION AND NICKEL-METAL HYDRIDE BATTERIES AT DIFFERENT STATE-OF-CHARGE CONDITIONS". Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online) 28/1 (2020), 1-8.