Yıl: 2020 Cilt: 10 Sayı: 1 Sayfa Aralığı: 53 - 60 Metin Dili: Türkçe DOI: 10.7212/zkufbd.v10i1.1526 İndeks Tarihi: 21-05-2021

Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri

Öz:
Bu araştırmada bakır oksit nanopartiküllerinin (CuO NP) $LD_50$ konsantrasyonunun etkisinde Galleria mellonella larvalarının orta barsak ve yağ dokularındaki protein, glikojen ve lipit miktarları ile immun sistemde önemli bir parameter olan total hemosit sayısı üzerine etkilerinin belirlenmesi amaçlanmıştır. CuO NP’ nin G. mellonella orta barsak ve yağ dokusundaki protein miktarında istatistiki açıdan fark gözlenmezken, glikojen ve lipit miktarlarında azalma meydana getirdiği tespit edilmiştir. Total hemosit sayısında ise, CuO NP’ nin etkisinde azalma meydana geldiği belirlenmiştir. Sonuç olarak, CuO NP’ nin immun ve metabolik sistemler üzerinde toksik etkilere neden olmaktadır.
Anahtar Kelime:

Immune and Metabolic Effects of Copper Oxide Nanoparticles on Galleria mellonella L. Larvae

Öz:
The aim of this study was to determine the effect of $LD_50$ concentration of copper oxide nanoparticles (CuO NPs) on the amount ofprotein, glycogen and lipid in the midgut and fat body of Galleria mellonella larvae and total hemocyte count which is an importantparameter in the immune system. While CuO NPs were not statistically different protein content in midgut and fat body of G. mellonella, it was found that glycogen andlipid contents were decreased. As for, total hemocyte count decreased when CuO NPs were applied to the diet. In conclusion, it wasshown that CuO NPs caused toxic effects on immune and metabolic systems of G. mellonella.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Amelia, M., Lincheneau, C., Silvi, S., Credi, A. 2012. Electrochemical roperties of CdSe and CdTe Quantum Dots. Chem. Soc. Rev., 41:5728- 5743. Doi:10.1039/C2CS35117J
  • Amorim, MJB., Gomes, SIL., Soares, AMVM., ScottFordsmand, JJ. 2012. Energy basal levels and allocation among lipids, proteins, and carbohydrates in Enchytraeus albidus: changes related to exposure to Cu salt and Cu nanoparticles. Water Air Soil Pollut. 223, 477-482. Doi: 10.1007/s11270-011- 0867-9
  • Aschberger, K., Micheletti, C., Sokull-Kluttgen, B., Christensen, FM. 2011. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health lessons learned from four case studies. Environ. Int., 37(6):1143-1156. Doi: 10.1016/j. envint.2011.02.005.
  • Babers, FH. 1941. Glycogen in Prodenia eridania, with special reference to the ingestion of glucose. J. Agric.Res. 62:509–530.
  • Bischof, C. 1995. Effects of heavy metal stress on carbohydrate and lipid concentrations in the haemolymph and total body tissue of parasitized Lymantria dispar L. larvae (Lepidoptera). Comp.Biochem.Physiol. 112C: 1, 87–92. Doi: 10.1016/0742- 8413(95)00079-8
  • Borowska, J., Pyza, E. 2011. Effects of heavy metals on insect immunocompetent cells. J. Insect Physiol. 57: 760-770. Doi: 10.1016/j.jinsphys.2011.02.012
  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem., 72:248-254. Doi: 10.1006/abio.1976.9999
  • Bronskill, J. 1961. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). J. Lep. Soc., 15: 102-104. Doi: 10.1016/0003-2697(76)90527-3
  • Canavoso, LE., Jouni, ZE., Karnas, KJ., Pennington, JE., Wells, MA. 2001. Fat metabolism in insects. Annu. Rev. Nutr., 21: 23-46. Doi: 10.1146/annurev.nutr.21.1.23
  • Cervera, A., Maymo, CA., Sendra, M., Martinez-Pardo, R., Garcera, MD. 2004. Cadmium effects on development and reproduction of Oncopeltus fasciatus (Heteroptera: Lygaidae). J. Insect Physiol. 50: 737-749. Doi: 10.1016/j. jinsphys.2004.06.001
  • Chang, H., Jwo, C., Lo, C., Tsung, T., Kao, M., Lin, H. 2005. Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev.Adv.Mater.Sci., 10:128-132.
  • Dadd, RH. 1985. Nutrition: organisms, in G. A. Kerkut and L. I. Gilbert [eds.], Comprehensive Insect Physiology, Biochemistry and Pharmacology, Pergamon, Oxford, United Kingdom. pp. 313–390.
  • De Coen, W., Janssen, CR. 2003. The missing biomarker link: relationships between effects on the cellular energy allocation biomarker of toxicant-stressed Daphnia magna and corresponding population characteristics. Environ.Toxicol.Chem 22, 1632-1641. Doi: 10.1897/1551-5028(2003)22<1632:TM BLRB>2.0.CO;2
  • Dhas, NA., Raj, CP., Gedanken, A. 1998. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10:1446-1452. Doi: 10.1021/ cm9708269
  • Emre, İ., Kayis, T., Coskun, M., Dursun, O., Cogun, HY. 2013. Changes in antioxidative enzyme activity, glycogen, lipid, protein, and malondialdehyde content in cadmium-treated Galleria mellonella larvae. Ann.Entomol.Soc.Am. 106(3):371- 377. Doi: 10.1603/AN12137
  • Finney, DJ. 1971. Probit Analysis. 3rd Edition, Cambridge University Press, Cambridge. Doi: 10.1002/jps.2600600940
  • Hogervorst, PAM., Wäckers, FL., Romeis, J. 2007. Effect of honeydew sugar composition on the longevity of Aphidius ervi. Entomol. Exp. Appl. 122: 223–232. Doi: 10.1111/j.1570- 7458.2006.00505.x
  • Ibrahim, AMA, Ali, AM. 2018. Silver and zinc oxide nanoparticles induce developmental and physiological changes in the larval and pupal stages of Spodoptera littoralis (Lepidoptera:Noctuidae). J. Asia-Pac. Entomol. 21(4):1373- 1378. Doi:10.1016/j.aspen.2018.10.018
  • Jones, JC., 1962. Current Concepts Corncerning Insect Hemocytes. Am. Zool., 2:209-246.
  • Lagadic, L., Caquet, T., Ramade, F. 1994. The role of biomarkers in environmental assessment. Invertebrate populations and communities. Ecotox. 3: 193–208. Doi: 10.1007/BF00117084
  • Lee, Y., Choi, JR., Lee, KJ., Stott, NE., Kim, D. 2008. Large– scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet–printed electronics. Nanotechnol., 19:7. Doi: 10.1088/0957-4484/19/41/415604
  • Li, Y., Liang, J., Tao, Z., Chen, J. 2007. CuO particles and plates: synthesis and gas–sensor applications. Mater. Res. Bull.. 43:2380-2385. Doi: 10.1016/j.materresbull.2007.07.045
  • Li, M., Czymmeki KJ., Huang, CP. 2011. Responses of Ceriodaphnia dubia to TiO2 and Al2 O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. J. Hazard. Mater. 187(1-3):502-508. Doi: 10.1016/j.jhazmat.2011.01.061
  • Memarizadeh, N., Ghadamyari, M., Adeli M., Talebi-Jahromi. K. 2014. Cellular energy allocation of Glyphodes pyloalis (Lep.: Pyralidae): changes related to exposure to TiO2 nanoparticles. J.Entomol. Soc. Iran, 33(4): 43-54.
  • Miranda, JE., Bortoli, SA., Takahashi, R., Silva, AF. 2003. Nutritional indexes of silkworm (Bombyx mori L.) treated with juvenile hormone analogues. Revista do Centro de Ciencias Rurais 8, 32-38.
  • Moe, SJ., Stenseth, NC., Smith, RH. 2001. Effect of a toxicant on population growth rates: sublethal and delayed responses in Blow fly populations. Funct. Ecol., 15, 712–721. Doi: 10.1046/j.0269-8463.2001.00575.x
  • Novais, SC., Amadeu, MVMS., De Coen, W., Amorim, MJB. 2013. Exposure of Enchytraeus albidus to Cd and Zn changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. Chemosphere 90, 1305- 1309. Doi: 10.1016/j.chemosphere.2012.09.030
  • Roe, HJ., Batley, JM., Gray, RR., Robinson, JN. 1961. Complete removal of glycogen from tissues by extraction with cold trichloroasetic acid solution. J. Biol. Chem., 236, 1224-1246.
  • Ryan, RO., Van der Horst, DJ. 2000. Lipid transport biochemistry and its role in energy production. Annu. Rev. Entomol. 45: 233–260. Doi: 10.1146/annurev.ento.45.1.233
  • Schrand, AM., Rahman, MF., Hussain, SM., Schlager, JJ., Smith, DA., Syed, AF. 2010. Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary ReviewsNanomedicine and Nanobiotechnology, 2(5):544-568. Doi: 10.1002/wnan.103
  • pring, JH, Matthews, JR, Downer, A. 1977. Fate of glucose in the haemolymph of the American cockroach, Periplaneta americana. J. Insect Physiol. 23: 525–529. Doi: 10.1016/0022- 1910(77)90264-5
  • Tang, F., Li, L., Chen, D. 2012. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24:1504-1534. Doi: 10.1002/adma.201104763
  • Van Handel, E. 1985. Rapid determination of total lipid’s mosquitoes. J. Am. Mosq. Control. Assoc., 1: 302-304
  • Wu, GX., Ye, GY, Hu, C., Cheng, JA. 2006. Accumulation of cadmium and its effects on growth, development and hemolymph biochemical compositions in Boettcherisca peregrina larvae (Diptera: Sarcophagidae). Insect Sci., 13, 31- 39. Doi: 10.1111/j.1744-7917.2006.00065.x
  • Yeager, JF, Munson SC. 1942. Changes induced in the blood cells of the southern armyworm Prodenia eridania by the administration of poisons. J.Agri. Res. 64:307–332.
  • Zorlu, T., Nurullahoğlu, ZU., Kaya, S. 2015. Effects of titanium dioxide nanoparticles on hemocytes of Galleria mellonella (L.) (Lepidoptera: Pyralidae). ICOCEE-Cappodocia, Nevşehir, Turkey, May 20-23.
APA TUNÇSOY B (2020). Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. , 53 - 60. 10.7212/zkufbd.v10i1.1526
Chicago TUNÇSOY Benay SEZER Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. (2020): 53 - 60. 10.7212/zkufbd.v10i1.1526
MLA TUNÇSOY Benay SEZER Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. , 2020, ss.53 - 60. 10.7212/zkufbd.v10i1.1526
AMA TUNÇSOY B Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. . 2020; 53 - 60. 10.7212/zkufbd.v10i1.1526
Vancouver TUNÇSOY B Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. . 2020; 53 - 60. 10.7212/zkufbd.v10i1.1526
IEEE TUNÇSOY B "Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri." , ss.53 - 60, 2020. 10.7212/zkufbd.v10i1.1526
ISNAD TUNÇSOY, Benay SEZER. "Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri". (2020), 53-60. https://doi.org/10.7212/zkufbd.v10i1.1526
APA TUNÇSOY B (2020). Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. Karaelmas Fen ve Mühendislik Dergisi, 10(1), 53 - 60. 10.7212/zkufbd.v10i1.1526
Chicago TUNÇSOY Benay SEZER Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. Karaelmas Fen ve Mühendislik Dergisi 10, no.1 (2020): 53 - 60. 10.7212/zkufbd.v10i1.1526
MLA TUNÇSOY Benay SEZER Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. Karaelmas Fen ve Mühendislik Dergisi, vol.10, no.1, 2020, ss.53 - 60. 10.7212/zkufbd.v10i1.1526
AMA TUNÇSOY B Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. Karaelmas Fen ve Mühendislik Dergisi. 2020; 10(1): 53 - 60. 10.7212/zkufbd.v10i1.1526
Vancouver TUNÇSOY B Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri. Karaelmas Fen ve Mühendislik Dergisi. 2020; 10(1): 53 - 60. 10.7212/zkufbd.v10i1.1526
IEEE TUNÇSOY B "Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri." Karaelmas Fen ve Mühendislik Dergisi, 10, ss.53 - 60, 2020. 10.7212/zkufbd.v10i1.1526
ISNAD TUNÇSOY, Benay SEZER. "Bakır Oksit Nanopartiküllerinin Galleria mellonella Larvaları Üzerine İmmün veMetabolik Etkileri". Karaelmas Fen ve Mühendislik Dergisi 10/1 (2020), 53-60. https://doi.org/10.7212/zkufbd.v10i1.1526