Yıl: 2021 Cilt: 21 Sayı: 1 Sayfa Aralığı: 50 - 57 Metin Dili: İngilizce DOI: 10.5152/electrica.2021.20036 İndeks Tarihi: 31-05-2021

BER Analysis For 2×2 Mimo High-Efficiency DCSK System

Öz:
This paper investigates a chaotic communication system based on the combination of high-efficiency differential-chaos-shift-keying (HEDCSK) schemeand multiple-input multiple-output technique, which aims at exploiting multi-path propagation to improve the system performance. Operation anddiscrete model of the system with the use of modulation/demodulation of HEDCSK and Alamouti space-time coding/decoding for 2×2 antennas aredescribed. The bit error rate (BER) in the presence of an additive white Gaussian noise (AWGN) and Rayleigh fading is theoretically analyzed and verifiedby numerical simulations. Obtained results show the improvement of the BER performance of the proposed scheme compared to other related systems
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. F. Lau, C. Tse, “Chaos-based Digital Communication Systems: Operating Principles, Analysis Methods, and Performance Evaluation”, Springer, 2003.
  • 2. W. Tam, F. Lau, C. Tse, “Digital Communications with Chaos: Multiple Access Techniques and Performance”, Elsevier Science, 2006.
  • 3. N. X. Quyen, Y. V. Vu, T. D. Nguyen, B. T. Quyet, “Simulation and implementation of improved chaotic Colpitts circuit for UWB communications”, in 3rd Int. Conf. on Commun. and Elect., Nha Trang, Vietnam, 2010, pp. 307-312.
  • 4. J. Yu, Y.-D. Yao, “Detection performance of chaotic spreading LPI waveforms”, IEEE Trans. Wireless Comm., vol. 4, no. 2, pp. 390-396, 2005. [CrossRef]
  • 5. G. Kaddoum, “Wireless chaos-based communication systems: a comprehensive survey”, IEEE Access, vol. 4, 2016. 2621-2648. [CrossRef] 6. N. X. Quyen, T. Q. Duong, N. Vo, Q. Xie, L. Shu, “Chaotic direct-sequence spread-spectrum with variable symbol period: A technique for enhancing physical layer security”, Computer Networks, vol. 109, pp. 4-12, 2006. [CrossRef]
  • 7. S. M. Berber, A. K. Gandhi, “Inherent diversity combining techniques to mitigate frequency selective fading in chaos-based DSSS systems”, Physical Communication, vol. 19, pp. 30-37, 2016. [CrossRef]
  • 8. S. M. Berber, “Discrete time domain analysis of chaos-based wireless communication systems with imperfect sequence synchronization”, Signal Processing, vol. 154, pp. 198-206, 2019. [CrossRef]
  • 9. G. Kolumbán, B. Vizvari, W. Schwarz, A. Abel, “Differential chaos shift keying: a robust code for chaos communication”, in 4th Int. Workshop on Nonlinear Dynamics Elect. Syst., 1996, pp. 87-92.
  • 10. G. Kaddoum, E. Soujeri, C. Arcila, K. Eshteiwi, “I-DCSK: An improved noncoherent communication system architecture”, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 9, pp. 901-905, 2015. [CrossRef]
  • 11. M. Herceg, D. Vranješ, G. Kaddoum, E. Soujeri, “Commutation code index DCSK modulation technique for high-data-rate communication systems”, IEEE Trans Circuits Syst II Express Briefs, vol. 65, no. 12, pp. 1954-1958, 2018. [CrossRef]
  • 12. G. Cheng, X. Chen, W. Liu, W. Xiao, “GCI-DCSK: Generalized Carrier Index Differential Chaos Shift Keying Modulation”, IEEE Commun Lett, vol. 23, no. 11, pp. 2012-2016, 2019. [CrossRef]
  • 13. G. Cai, Y. Fang, J. Wen, S. Mumtaz, Y. Song, V. Frascolla, “Multi-Carrier M-ary DCSK System With Code Index Modulation: An Efficient Solution for Chaotic Communications”, IEEE J Sel Top Signal Process, vol. 13, no. 6, pp. 1375 - 1386, 2019. [CrossRef]
  • 14. N. X. Quyen, “Quadrature MC-DCSK scheme for chaos-based cognitive radio”, Int J Bifurcat Chaos, vol. 29, no. 13, p. 1950177, 2019. [CrossRef]
  • 15. H. Yang, G-P. Jiang, “High-Efficiency Differential-Chaos-Shift-Keying Scheme for Chaos-Based Noncoherent Communication”, IEEE Trans Circuits Syst I Regul Pap, vol. 59, no. 5, pp. 312-316, 2012. [CrossRef]
  • 16. N. X. Quyen, “Bit-error-rate evaluation of high-efficiency differential-chaos-shift-keying system over wireless channels”, Journal of Circuits, Systems and Computers, vol. 27, no. 01, p.1850008, 2018. [CrossRef]
  • 17. W. Shaonan, L. Yingjie, M. Weijiao, “Design of a novel frequency division scheme for DCSK chaos communication system”, 3rd Int. Conf. on Information Management (ICIM), Chengdu, 2017, pp. 317-321. [CrossRef]
  • 18. F. Taleb, F. T. Bendimerad, D. Roviras, “Very high efficiency differential chaos shift keying system”, IET Communications, vol. 10, no. 17, pp. 2300-2307, 2016. [CrossRef]
  • 19. E. G. Larsson, O. Edfors, F. Tufvesson, T. L. Marzetta, “Massive MIMO for next generation wireless systems”, IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, 2014. [CrossRef]
  • 20. H. Lipfert, “MIMO OFDM Space Time Coding - Spatial Multiplexing, Increasing Performance and Spectral Efficiency in Wireless Systems”, Part I Technical Basis (Technical report). Institut für Rundfunktechnik, 2007.
  • 21. H. F. Ma, H. B. Kan, “Space-time coding and processing with differential chaos shift keying scheme”, IEEE Int. Commun. Conf. (ICC), Dresden, Germany, 2009, pp. 1-5.
  • 22. G. Kaddoum, M. Vu, F. Gagnon, “Performance analysis of differential chaotic shift keying communications in MIMO systems”, in 2011 IEEE Int. Symp. of Circuits and Systems (ISCAS), Rio de Janeiro, 2011, pp. 1580-1583. [CrossRef]
  • 23. S. Wang, X. Wang, “M-DCSK-Based Chaotic Communications in MIMO Multipath Channels with No Channel State Information”, IEEE Trans Circuits Syst II Express Briefs, vol. 57, no. 12, pp. 1001- 1005, 2010. [CrossRef]
  • 24. J. Lee, H. Ryu, “Diversity method in the chaos CDSK communication system”, 16th Int. Conf. on Advanced Communication Technology, PyeongChang, 2014, pp. 1184-1187. [CrossRef]
  • 25. P. Chen, L. Wang, F. C. M. Lau, “One Analog STBC-DCSK Transmission Scheme not Requiring Channel State Information”, IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 60, no. 4, pp. 1027- 1037, 2013. [CrossRef]
  • 26. T. Geisel, V. Fairen, “Statistical properties of chaos in Chebyshev maps”, Phys. Lett. A., vol. 105A, pp. 263-266, 1984. [CrossRef]
  • 27. P. Borjesson, C.-E. Sundberg, “Simple Approximations of the Error Function Q(x) for Communications Applications”, IEEE Transactions on Communications, vol. 27, no. 3, pp. 639-643, 1979. [CrossRef]
APA Xuan Quyen N (2021). BER Analysis For 2×2 Mimo High-Efficiency DCSK System. , 50 - 57. 10.5152/electrica.2021.20036
Chicago Xuan Quyen Nguyen BER Analysis For 2×2 Mimo High-Efficiency DCSK System. (2021): 50 - 57. 10.5152/electrica.2021.20036
MLA Xuan Quyen Nguyen BER Analysis For 2×2 Mimo High-Efficiency DCSK System. , 2021, ss.50 - 57. 10.5152/electrica.2021.20036
AMA Xuan Quyen N BER Analysis For 2×2 Mimo High-Efficiency DCSK System. . 2021; 50 - 57. 10.5152/electrica.2021.20036
Vancouver Xuan Quyen N BER Analysis For 2×2 Mimo High-Efficiency DCSK System. . 2021; 50 - 57. 10.5152/electrica.2021.20036
IEEE Xuan Quyen N "BER Analysis For 2×2 Mimo High-Efficiency DCSK System." , ss.50 - 57, 2021. 10.5152/electrica.2021.20036
ISNAD Xuan Quyen, Nguyen. "BER Analysis For 2×2 Mimo High-Efficiency DCSK System". (2021), 50-57. https://doi.org/10.5152/electrica.2021.20036
APA Xuan Quyen N (2021). BER Analysis For 2×2 Mimo High-Efficiency DCSK System. Electrica, 21(1), 50 - 57. 10.5152/electrica.2021.20036
Chicago Xuan Quyen Nguyen BER Analysis For 2×2 Mimo High-Efficiency DCSK System. Electrica 21, no.1 (2021): 50 - 57. 10.5152/electrica.2021.20036
MLA Xuan Quyen Nguyen BER Analysis For 2×2 Mimo High-Efficiency DCSK System. Electrica, vol.21, no.1, 2021, ss.50 - 57. 10.5152/electrica.2021.20036
AMA Xuan Quyen N BER Analysis For 2×2 Mimo High-Efficiency DCSK System. Electrica. 2021; 21(1): 50 - 57. 10.5152/electrica.2021.20036
Vancouver Xuan Quyen N BER Analysis For 2×2 Mimo High-Efficiency DCSK System. Electrica. 2021; 21(1): 50 - 57. 10.5152/electrica.2021.20036
IEEE Xuan Quyen N "BER Analysis For 2×2 Mimo High-Efficiency DCSK System." Electrica, 21, ss.50 - 57, 2021. 10.5152/electrica.2021.20036
ISNAD Xuan Quyen, Nguyen. "BER Analysis For 2×2 Mimo High-Efficiency DCSK System". Electrica 21/1 (2021), 50-57. https://doi.org/10.5152/electrica.2021.20036