Yıl: 2021 Cilt: 21 Sayı: 1 Sayfa Aralığı: 58 - 65 Metin Dili: İngilizce DOI: 10.5152/electrica.2020.20037 İndeks Tarihi: 31-05-2021

State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables

Öz:
Lightning continues to possess threats to the reliable supply of electrical energy by causing damages to electrical equipment. Lightning transientcauses outages either by directly hitting electrical equipment or by the electromagnetic interference induced by it upon hitting the ground near to theequipment. An electrical equipment which is witnessing a rise in application over the years are the insulated power cables. Use of these cables are notonly confined to transferring electrical energy over distances but they are also used as transformer winding in a type of transformer pioneered by ABBcalled powerformers. Using XLPE insulated power cables as a case in point, the present study seeks to unravel the trajectory of research undertaken sofar in this area of transient behaviour of insulated power cables against lightning transients. In particular, attention has been focused on the responseof insulated power cables against non-standard lightning transient voltage waveforms. This review brings to the light that while transients responseagainst standard 1.2/50 µs lightning waveform is relatively well studied but more work needs to be further undertaken to fully appreciate the behaviourof insulted power cables against the non-standard lightning transient waveforms which are more prevalent in actual field.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. M. A. Uman, “The Art and Science of Lightning Protection”, Cambridge University Press, New York, USA, 2008. [CrossRef]
  • 2. CIGRE Working Group C4, 407 (2013) Lightning Parameters for Engineering Applications, CIGRE Technical Brochure 549.
  • 3. E. Karami, A. Khalilinia, A. Bali, K. Rouzbehi, “Monte-Carlo-based simulation and investigation of 230 kV transmission lines outage due to lightning”, IET High Voltage, March, 2020, vol. 5 no. 1, pp. 83-91. [CrossRef]
  • 4. X. Liu, M. Zhang, T. Wang, Y. Ge, “Fast evaluation of lightning-induced voltages of overhead line and buried cable considering the lossy ground”, in IET Science, Measurement & Technology, vol. 13, no. 1, pp. 67-73, January, 2019. [CrossRef]
  • 5. I. A. Metwally, “The Evolution of Medium Voltage Power Cables”, IEEE Potentials, vol. 31, no. 3, pp: 20 – 25, May-June, 2012. [CrossRef]
  • 6. L. Gkoura, T. Wang, A. Anastasiou, N. Harid, H. Griffiths, M. Haddad, M. Fardis, M. Karayianni, “1 H NMR tests on damaged and undamaged XLPE and SiR Samples”, IET High Voltage, October, 2019, vol. 4 no. 3, pp. 203-209. [CrossRef]
  • 7. IEEE Standard for High-Voltage Testing Techniques, IEEE Std 4-2013 (Revision of IEEE Std 4-1995), 10 May 2013.
  • 8. P. Chowdhuri, A. C. Baker, G. Carrara, W. A. Chisholm, K. Feser, S. Grzybowski, A. Lux, F. R. Newnam, “Review of research on nonstandard lightning voltage waves”, in IEEE Transactions on Power Delivery, vol. 9, no. 4, pp. 1972-1981, October, 1994. [CrossRef]
  • 9. W. Sima, P. Sun, M. Yang, J. Wu, J. Hua, “Impact of time parameters of lightning impulse on the breakdown characteristics of oil paper insulation”, IET High Voltage, April, 2016, vol. 1, no. 1, pp. 18–24. [CrossRef]
  • 10. M. Shigihara, A. Piantini, C. P. Braz, D. A. da Silva, C. Y. Kodaira, “Generation of Non-standard Lightning Impulse Unipolar Waveshapes”, 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), ATHENS, Greece, September, 2018, pp. 1-4. [CrossRef]
  • 11. M. Paolone, C. A. Nucci, E. Petrache, F. Rachidi, “Mitigation of lightning-induced overvoltages in medium voltage distribution lines by means of periodical grounding of shielding wires and of surge arresters: modeling and experimental validation”, IEEE Trans. Power Delivery, vol. 19, no. 1, pp. 423 - 431, January, 2004. [CrossRef]
  • 12. S. Venkatesan, S. Usa, “Impulse Strength of Transformer Insulation With Nonstandard Waveshapes”, IEEE Transactions on Power Delivery, vol. 22, no. 4, October, 2007. [CrossRef]
  • 13. S. Okabe, J. Takami, T. Tsuboi, G. Ueta, A. Ametani, K. Hidaka, “Discussion on standard waveform in the lightning impulse voltage test”, in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 1, pp. 147-156, February, 2013. [CrossRef]
  • 14. N. L. Dao, P. L. Lewin, I. L. Hosier, S. G. Swingler, “A comparison between LDPE and HDPE cable insulation properties following lightning impulse ageing”, 10th IEEE International Conference on Solid Dielectrics, Potsdam, Germany, September, 2010, pp. 1-4.
  • 15. J Takami, S. Okabe, E. Zaima, “Study of Lightning Surge Overvoltages at Substations Due to Direct Lightning Strokes to Phase Conductors”, IEEE Transactions on Power Delivery, vol. 25, no. 1, January, 2010. [CrossRef]
  • 16. A. Ametani “The History and Recent Trends of Transient Analysis in Transmission Lines”, International Conference on Power Systems Transients (IPST2013), Vancouver, Canada, July, 2013.
  • 17. S. Okabe, “Evaluation of breakdown characteristics of oil-immersed transformers under nonstandard lightning impulse waveforms - definition of nonstandard lightning impulse waveforms and insulation characteristics for waveforms including pulses”, in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 14, no. 1, pp. 146-155, February, 2007. [CrossRef]
  • 18. C. P. Braz, A. Piantini, M. Shigihara, M. C. E. S. Ramos, “Analysis of the disruptive effect model for the prediction of the breakdown characteristics of distribution insulators under non-standard lightning impulses”, 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, September, 2012.
  • 19. M. Popov, L. Grcev, H. K. Hoidalen, B. Gustavsen, V. Terzija, “Investigation of the Overvoltage and Fast Transient Phenomena on Transformer Terminals by Taking Into Account the Grounding Effects”, in IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 5218-5227, November-December, 2015. [CrossRef]
  • 20. R. G. Olsen and L. Grcev, “Analysis of High-Frequency Grounds: Comparison of Theory and Experiment”, in IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4889-4899, November-December, 2015. [CrossRef]
  • 21. L. D. Grcev, M. Heimbach, “Frequency dependent and transient characteristics of substation grounding systems”, in IEEE Transactions on Power Delivery, vol. 12, no. 1, pp. 172-178, January, 1997. [CrossRef]
  • 22. Q. Lia, M. Rubinstein, J. Wang, L. Cai, M. Zhou, Y. Fan, F. Rachidi, “On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields”, Electric Power Systems Research, vol. 178, January, 2020, 106047. [CrossRef]
  • 23. S. Visácro, M. B. Guimaraes, C. H. D. Oliveira, “Achievements in the Measurement of Tower-footing Impulse Impedance of Transmission Lines”, 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2-7 September 2018, pp. 1-4. [CrossRef]
  • 24. V. A. Toseva, L. Grcev, K. El Khamlichi Drissi, “High frequency performance of ground rod in two-layer soil”, IEEE EUROCON 2017 -17th International Conference on Smart Technologies, Ohrid, July, 2017, pp. 914-918. [CrossRef]
  • 25. J. He, R. Zeng, Y. Gao, Y. Tu, W. Sun, J. Zou, Z. Guan, “Seasonal influences on safety of substation grounding system”, in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 788-795, July, 2003. [CrossRef]
  • 26. A. S. Neto, A. Piantini, M. N. N. Santos, V. L. Coelho, C. Y. Kodaira, R. A. C. Altafim, Â. T. Lucca, P.L. Nosaki, “A system for experimental studies of lightning currents and overvoltages”, International Symposium on Lightning Protection, 2-6 October 2017, Natal, Brazil.
  • 27. U. Savadamuthu, K. Udayakumar, V. Jayashankar, “Modified disruptive effect method as a measure of insulation strength for nonstandard lightning waveforms”, IEEE Transactions on Power Delivery, vol.17, no. 2, April, 2002, pp. 510-515. [CrossRef]
  • 28. Harry Orton, “History of underground power cables”, IEEE Electrical Insulation Magazine, vol. 29, no. 4, July-August, 2013. [CrossRef]
  • 29. J.K. Nelson, “Overview of nano dielectrics: insulating materials of the future”, Electrical Insulation Conf. and Electrical Manufacturing Expo, pp. 229-235, October, 2007.
  • 30. C. C. Reddy, T. S. Ramu, “Polymer nanocomposites as insulation for HV DC cables - Investigations on the thermal breakdown”, in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 1, pp. 221-227, February, 2008. [CrossRef]
  • 31. F A Uribe, J L Naredo, P Moreno, L Guardado, “ Electromagnetic Transients in Underground Transmission Systems through the Numerical Laplace Transform”, Electrical Power and Energy Systems, vol. 24, March, 2002, pp. 215-221. [CrossRef]
  • 32. Z. Zhan, J. Zhao, W. Zhao, L. Zhong, L. Hu, W. Rao, M. Zheng, S. Meng, “Influence of morphological variations on the AC breakdown of XLPE insulation in submarine cable factory joints”, IET High Voltage, March, 2020, vol. 5 no. 1, pp. 69-75. [CrossRef]
  • 33. J. Densely, “Ageing mechanisms and diagnostics for power cables - An overview”, IEEE Electrical Insulation Magazine, vol. 17, no. 1, pp. 14-22, February, 2001. [CrossRef]
  • 34. C. Zhou, H. Yi, X. Dong, “Review of recent research towards power cable life cycle management”, IET High Voltage, June, 2017, vol. 2 no. 3, pp. 179-187. [CrossRef]
  • 35. M. Shaban, M. A. Salam, S. P. Ang, W. Voon, “Induced sheath voltage in power cables: A review”, Renewable and Sustainable Energy Reviews, Volume 62, September 2016, pp. 1236-1251. [CrossRef]
  • 36. K. Steinbrich, “Influence of semiconducting layers on the attenuation behaviour of single-core power cables”, in IEE Proceedings - Generation, Transmission and Distribution, vol. 152, no. 2, pp. 271- 276, 4 March 2005. [CrossRef]
  • 37. A. Ametani, Y. Miyamoto, N. Nagaoka, “Semiconducting Layer Impedance and its Effect on Cable Wave-Propagation and Transient Characteristics”, IEEE Transactions on Power Delivery, vol. 19, pp. 1523-1531, October, 2004. [CrossRef]
  • 38. B. Gustavsen, J. Sletbak, “Transient Sheath Overvoltages in Armoured Power Cables”, IEEE Transactions on Power Delivery, vol. 11, pp. 1594-1600, July, 1996. [CrossRef]
  • 39. U. R. Patel, B. G. P. Triverio, “An Equivalent Surface Current Approach for the Computation of the Series Impedance of Power Cables with Inclusion of Skin and Proximity Effects”, IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2474-2482, October, 2013. [CrossRef]
  • 40. B. Gustavsen, J. Sletbak, T. Henriksen, “Simulation of Transient Sheath Overvoltages in the presence of Proximity Effects”, IEEE Transactions on Power Delivery, vol. 10, no. 2, pp. 1066-1075, April, 1995. [CrossRef]
  • 41. P. Chowdhuri, C. Pallem, J. A. Demko, M. J. Gouge, “Analysis on the Transient Voltage Performance of a DC Superconducting Cable”, IEEE Transactions on Applied Superconductivity, vol. 16, no. 1, pp. 21-30, March, 2006. [CrossRef]
  • 42. T. J. Å. Hammarström, T. Bengtsson, S. M. Gubanski, “Partial Discharge Characteristics of Electrical Treeing in XLPE Insulation Exposed to Voltages of Different Rise Times”, IEEJ Transactions on Fundamentals and Materials, vol. 139, no. 2, pp. 85-91, 2019. [CrossRef]
  • 43. H. Ye, T. Fencher, X. Lei, Y. Luo, M. Zhou, Z. Han, H. Wang, Q. Zhuang, R. Xu, D. Li, “Review on HVDC cable terminations”, IET High Voltage, 2018, vol. 3 no. 2, pp. 79-89. [CrossRef]
  • 44. K. Bhuyan, M. Taro, S. Chatterjee, “Simulation of lightning impulse voltage stresses in underground cables”, IEEE 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON) pp. 34-39, 10-12 December 2015, Bangalore, India. [CrossRef]
  • 45. Z. Song, M.R. Raghuveer, J. He, “Model for Prediction of Characteristics of Lightning Breakdown Channels in Soil in the Presence of a Buried Cable”, IEE Proceedings-Generation Transmission Distribution, vol. 150, pp. 623-628, September, 2003. [CrossRef]
  • 46. M. Goertz, S. Wenig, C. Hirsching, M. Kahl, M. Suriyah, T. Leibfried, “Analysis of Extruded HVDC Cable Systems Exposed to Lightning Strokes”, IEEE Transactions on Power Delivery, vol. 33, no. 6, pp. 3009-3018, December, 2018. [CrossRef]
  • 47. H. Khalilnezhad, M. Popov, Lou van der Sluis, J. A. Bos, A. Ametani, “Statistical Analysis of Energization Overvoltages in EHV Hybrid OHL-Cable Systems”, IEEE Transactions on Power Delivery, vol. 33, no. 6, pp. 2765-2775, December, 2018. [CrossRef]
  • 48. M. Asif, H. Lee, U. A. Khan, K. Park, B. Lee, “Analysis of Transient Behavior of Mixed High Voltage DC Transmission Line Under Lightning Strikes”, IEEE Access, vol. 7, pp. 7194-7205, 2019. [CrossRef]
  • 49. F. Faria da Silva, K. S Pedersen, C. L. Bak, “Lightning in hybrid cable-overhead lines and consequent transient overvoltages”, Proceedings of International Conference on Power Systems Transients (IPST), 26 June 2017, Seoul, South Korea.
  • 50. S. Sekioka, H. Otoguro, T. Funabashi, “A Study on Overvoltages in Windfarm caused by Direct Lightning Stroke”, IEEE Transactions on Electromagnetic Compatibility, vol. 34, no. 2, pp. 671-679, April, 2019. [CrossRef]
APA Taro M, Chatterjee S (2021). State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. , 58 - 65. 10.5152/electrica.2020.20037
Chicago Taro Mudang,Chatterjee Saibal State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. (2021): 58 - 65. 10.5152/electrica.2020.20037
MLA Taro Mudang,Chatterjee Saibal State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. , 2021, ss.58 - 65. 10.5152/electrica.2020.20037
AMA Taro M,Chatterjee S State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. . 2021; 58 - 65. 10.5152/electrica.2020.20037
Vancouver Taro M,Chatterjee S State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. . 2021; 58 - 65. 10.5152/electrica.2020.20037
IEEE Taro M,Chatterjee S "State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables." , ss.58 - 65, 2021. 10.5152/electrica.2020.20037
ISNAD Taro, Mudang - Chatterjee, Saibal. "State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables". (2021), 58-65. https://doi.org/10.5152/electrica.2020.20037
APA Taro M, Chatterjee S (2021). State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. Electrica, 21(1), 58 - 65. 10.5152/electrica.2020.20037
Chicago Taro Mudang,Chatterjee Saibal State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. Electrica 21, no.1 (2021): 58 - 65. 10.5152/electrica.2020.20037
MLA Taro Mudang,Chatterjee Saibal State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. Electrica, vol.21, no.1, 2021, ss.58 - 65. 10.5152/electrica.2020.20037
AMA Taro M,Chatterjee S State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. Electrica. 2021; 21(1): 58 - 65. 10.5152/electrica.2020.20037
Vancouver Taro M,Chatterjee S State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables. Electrica. 2021; 21(1): 58 - 65. 10.5152/electrica.2020.20037
IEEE Taro M,Chatterjee S "State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables." Electrica, 21, ss.58 - 65, 2021. 10.5152/electrica.2020.20037
ISNAD Taro, Mudang - Chatterjee, Saibal. "State of Research on Effects of Cloud to Ground Lightning Transients on High Voltage Polymeric Insulated Power Cables". Electrica 21/1 (2021), 58-65. https://doi.org/10.5152/electrica.2020.20037