Yıl: 2021 Cilt: 46 Sayı: 1 Sayfa Aralığı: 42 - 52 Metin Dili: Türkçe DOI: 10.15237/gida.GD20095 İndeks Tarihi: 02-06-2021

GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI

Öz:
Gıda proteinleri; besinsel, biyolojik ve fonksiyonel aktivitelerin önemli bir bölümünde rol almaktadır. Aminoasit dizilerine bağlı olarak, gıda proteini kaynaklı peptidler kardiyovasküler, endokrin, bağışıklık ve sinirsistemleri üzerindeki etkileri gibi çok sayıda fonksiyonel aktivite göstermektedirler. Bu peptidler; kanbasıncını düşürücü (ACE inhibitörü) etkileri, antimikrobiyel özellikleri, kolesterolü düşürme yeteneği,mineral bağlama yeteneği, antitrombotik ve antioksidan aktiviteleri, immünomodülatör etkileri ve opioidaktiviteleri dahil olmak üzere sağlık üzerinde çeşitli etkilere sahiptirler. Bu fonksiyonel peptidler, öncülprotein molekülü içerisinde inaktif formda ya da gizlenmiş olarak bulunmaktadırlar ve in vivo gastrointestinalsindirim, proteolitik starter kültürler ile gıda fermantasyonu veya proteolitik enzimler ile gerçekleştirilenhidroliz sırasında aktifleşmektedirler. Bu derlemede, gıda kaynaklı biyoaktif peptidlerin fonksiyonel özellikleriüzerinde durulmakta olup terapatik bileşenler ve fonksiyonel gıda bileşenleri olarak kullanımlarıdeğerlendirilmektedir.
Anahtar Kelime:

FOOD PROTEINS-DERIVED BIOACTIVE PEPTIDES: FUNCTIONS AND CLASSIFICATION ACCORDING TO THEIR ROLES ON HEALTH

Öz:
Food proteins play a role in an important part of nutritional, biological, and functional activities. Depending on their amino acid sequences, food protein-derived peptides exhibit several functional activities such as effects on the cardiovascular, endocrine, immune, and nervous systems. These peptides have different health effects, including blood pressure-lowering (ACE inhibitory) effects, antimicrobial properties, cholesterol-lowering ability, mineral binding ability, antithrombotic and antioxidant activities, immunomodulatory effects, and opioid activities. These functional peptides are inactive or hidden within the sequence of the parent protein molecule and are activated during in vivo gastrointestinal digestion, fermentation of food with proteolytic starter cultures, or hydrolysis via proteolytic enzymes. In this review, the functional properties of food-derived bioactive peptides are dwelled on and their usage as therapeutic ingredients and functional food ingredients are evaluated.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Aftab, R.A., Khan, A.H., Adnan, A.S., Jannah, N. (2016). A systematic review on randomized control trials on rennin angiotensin aldosterone system inhibitors role in managing hypertension among hemodialysis patients. Ren Fail, 38(3): 474- 480.
  • Aguilar-Toalá, J., Hernández-Mendoza, A., González-Córdova, A., Vallejo-Cordoba, B., Liceaga, A. (2019). Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides, 122: 1-13.
  • Aiello, G., Ferruzza, S., Ranaldi, G., Sambuy, Y., Arnoldi, A., Vistoli, G., Lammi, C. (2018). Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. J Funct Foods, 45: 363- 370.
  • Akıllıoğlu, H.G., Yalçın, E. (2010). Tahıl protein hidrolizatlarının antioksidan aktiviteleri. Gıda, 35(3): 227-233.
  • Arcan, I., Yemenicioğlu, A. (2007). Antioxidant activity of protein extracts from heat-treated or thermally processed chickpeas and white beans. Food Chem, 103(2): 301-312.
  • Ashaolu, T.J. (2020). Health applications of soy protein hydrolysates. Int J Pept Res Ther, 26: 2333- 2343.
  • Birkemo, G., O’Sullivan, O., Ross, R., Hill, C. (2009). Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. J Appl Microbiol, 106(1): 233-240.
  • Camargo, A.C., Fernandes, B.L., Cruz, L., Ferro, E.S. (2012). Bioactive peptides produced by limited proteolysis. In: Colloquium Series on Neuropeptides, Volume 1, Morgan & Claypool Life Sciences,pp. 1-92.
  • Cheng, S., Tu, M., Liu, H., Zhao, G., Du, M. (2019). Food-derived antithrombotic peptides: preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr, 59(sup1): S81- S95.
  • Damar, İ., Karadeniz, F. (2012). Biyoaktif peptitlerin ve proteinlerin antioksidan aktiviteleri ve fonksiyonel gıdalarda kullanılabilirliği. Dünya Gıda, 6: 70-75.
  • De Noni, I., FitzGerald, R.J., Korhonen, H.J., Le Roux, Y., Livesey, C.T., Thorsdottir, I., Tomé, D., Witkamp, R. (2009). Review of the potential health impact of β-casomorphins and related peptides, EFSA Sci Rep, 231: 1-107.
  • Dean, R., Bilsky, E.J., Negus, S.S. (ed.) (2009). Opiate receptors and antagonists: from bench to clinic. Springer Science & Business Media, New York, USA, 757 p.
  • Dimitrova, D., Hristova, A., Lambev, M., Mihaylova, S., Paipanova, T., ValchevaKuzmanova, S. (2019). Review on the pharmacological activities of lactoferricin and lactoferricin analogues. Scr Sci Med, 51(2): 15-22.
  • Drago-Serrano, M.E., Campos-Rodriguez, R., Carrero, J.C., de la Garza, M. (2018). Lactoferrin and peptide-derivatives: antimicrobial agents with potential use in nonspecific immunity modulation. Curr Pharm Des, 24 (10), 1067-1078.
  • Dullius, A., Goettert, M.I., de Souza, C.F.V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods– Biotechnological facilitation of industrial scaleup. J Funct Foods, 42: 58-74.
  • Dullius, A., Fassina, P., Giroldi, M., Goettert, M.I., de Souza, C.F.V. (2020). A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res Int, 131: 1-16.
  • Elias, R.J., Kellerby, S.S., Decker, E.A. (2008). Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr, 48(5): 430-441.
  • Erdmann, K., Cheung, B.W.Y., Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem, 19(10): 643- 654.
  • Farvin, K.S., Baron, C.P., Nielsen, N.S., Otte, J, Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: part 2–characterisation of peptide fractions. Food Chem, 123(4): 1090-1097.
  • Fatchiyah, F., Natasia, S.C. (2018). Inhibition potency of HMGR enzyme against hypercholesterolemia by bioactive peptides of CSN1S2 protein from caprine milk. In AIP Conference Proceedings (Vol. 2021, No. 1, p. 070014). AIP Publishing LLC.
  • Gallwitz, B. (2019). Clinical use of DPP-4 inhibitors. Front Endocrinol, 10: 1-10.
  • Głąb, T.K., Boratyński, J. (2017). Potential of casein as a carrier for biologically active agents. Top Curr Chem, 375(71):1-20.
  • Gómez-Ruiz, J.Á., Taborda, G., Amigo, L., Recio, I., Ramos, M. (2006). Identification of ACEinhibitory peptides in different Spanish cheeses by tandem mass spectrometry. Eur Food Res Technol, 223(5): 595-601.
  • Gorouhi, F., Maibach, H. (2009). Role of topical peptides in preventing or treating aged skin. Intl J Cosmet Sci, 31(5): 327-345.
  • Guedes, J.P., Pereira, C.S., Rodrigues, L.R., CôrteReal, M. (2018). Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Front Oncol, 8: 1-12.
  • Hartmann, R., Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol, 18(2): 163- 169.
  • Hernández-Ledesma, B., Hsieh, C.C. (2017). Chemopreventive role of food-derived proteins and peptides: A review. Crit Rev Food Sci Nutr, 57(11): 2358-2376.
  • Hernández Galán, L., Cardador Martínez, A., Picque, D., Spinnler, H.E., López Del Castillo Lozano, M., Martín Del Campo Barba, S. (2016). Angiotensin converting enzyme inhibitors and antioxidant peptides release during ripening of Mexican Cotija hard cheese. J Food Res, 5(3): 85- 91.
  • Hong, F., Ming, L., Yi, S., Zhanxia, L., Yongquan, W., Chi, L. (2008). The antihypertensive effect of peptides: a novel alternative to drugs? Peptides, 29(6): 1062-1071.
  • Iwaniak, A., Darewicz, M., Minkiewicz, P. (2018). Peptides derived from foods as supportive diet components in the prevention of metabolic syndrome. Compr Rev Food Sci Food Saf, 17(1): 63- 81.
  • Juillerat-Jeanneret, L., Robert, M.C., Juillerat, M.A. (2011). Peptides from Lactobacillus hydrolysates of bovine milk caseins inhibit prolylpeptidases of human colon cells. J Agric Food Chem, 59(1): 370-377.
  • Karami, Z., Akbari-Adergani, B. (2019). Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. J Food Sci Technol, 56(2): 535-547.
  • Kehinde, B.A., Sharma, P. (2020). Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Crit Rev Food Sci Nutr, 60(2), 322-340.
  • Kınık, Ö., Gürsoy, O. (2002). Süt proteinleri kaynaklı biyoaktif peptitler. Pamukkale Üni Müh Bilim Derg, 8(2): 195-203.
  • Kitts, D.D., Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharma Des, 9(16): 1309-1323.
  • Korhonen, H., Pihlanto, A. (2003). Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharma Des, 9(16): 1297-1308.
  • Korhonen, H., Pihlanto, A. (2006). Bioactive peptides: production and functionality, Int Dairy J, 16(9): 945-960.
  • Kruzel, M.L. (2011). Therapeutic use of peptides. Google Patents.
  • Lammi, C., Arnoldi, A., Aiello, G. (2019). Soybean peptides exert multifunctional bioactivity modulating 3-hydroxy-3- methylglutaryl-coa reductase and dipeptidyl peptidase-iv targets in vitro. J Agric Food Chem, 67(17): 4824-4830.
  • Li, H.Y., Li, M., Luo, C.C., Wang, J.Q., Zheng, N. (2017). Lactoferrin exerts antitumor effects by inhibiting angiogenesis in a HT29 human colon tumor model. J Agric Food Chem, 65(48): 10464- 10472.
  • Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G.A., Beguinot, F., Miele, C. (2019). Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci, 20:1-23.
  • Lozano-Ojalvo, D., López-Fandiño, R. (2018). Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr, 58(10): 1629-1649.
  • Mahdi, C., Untari, H., Padaga, P. (2017). Fermented goat milk supplementation in rats hypercholesterolmic on malonyldialdehyde and description of liver histopathology. Indones J Cancer Chemoprev, 8(1): 1-8.
  • Masood, R., Khosravi-Darani, K. (2015). Biopeptides in milk: opiate and antithrombotic effects. Mini Rev Med Chem, 15(10): 872-877.
  • Meisel, H. (1998). Overview on milk proteinderived peptides. Int Dairy J, 8(5): 363-373.
  • Mills, K.T., Stefanescu, A., He, J. (2020). The global epidemiology of hypertension. Nat Rev Nephrol, 16(4): 223-237.
  • Mohammed, M.M., Ramadan, G., Zoheiry, M.K., El-Beih, N.M. (2019). Antihepatocarcinogenic activity of whey protein concentrate and lactoferrin in diethylnitrosamine-treated male albino mice. Environ Toxicol, 34(9): 1025-1033.
  • Mohanty, D., Jena, R., Choudhury, P.K., Pattnaik, R., Mohapatra, S., Saini, M.R. (2016). Milk derived antimicrobial bioactive peptides: a review. Int J Food Prop, 19(4): 837-846.
  • Mudgil, P., Kamal, H., Yuen, G.C., Maqsood, S. (2018). Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem, 259: 46-54.
  • Munir, M., Nadeem, M., Qureshi, T.M., Gamlath, C.J., Martin, G.J., Hemar, Y., Ashokkumar, M. (2020). Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrason Sonochem, 67: 1-8.
  • Nagasawa, A., Fukui, K., Kojima, M., Kishida, K., Maeda, N., Nagaretani, H., Hibuse, T., Nishizawa, H., Kihara, S., Waki, M., Takamatsu, K., Funahashi, T., Matsuzawa, Y. (2003). Divergent effects of soy protein diet on the expression of adipocytokines. Biochem Biophys Res Commun, 311(4): 909-914.
  • Nielsen, M.S., Martinussen, T., Flambard, B., Sørensen, K.I., Otte, J. (2009). Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. Int Dairy J, 19 (3): 155-165.
  • Nongonierma, A.B., FitzGerald, R.J. (2016). Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 79: 1-7.
  • Nongonierma, A.B., Lalmahomed, M., Paolella, S., FitzGerald, R.J. (2017a). Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem, 231: 202-211.
  • Nongonierma, A.B., Mazzocchi, C., Paolella, S., FitzGerald, R.J. (2017b). Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Res Int, 94: 79-89.
  • Pereira, C.S., Guedes, J.P., Gonçalves, M., Loureiro, L., Castro, L., Gerós, H., Rodrigues, L. R., Côrte-Real, M. (2016). Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Oncotarget, 7(38): 62144-62158.
  • Pisanu, S., Pagnozzi, D., Pes, M., Pirisi, A., Roggio, T., Uzzau, S., Addis, M.F. (2015). Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. Int Dairy J, 42: 26-33.
  • Rana, S., Bajaj, R., Mann, B. (2018). Characterization of antimicrobial and antioxidative peptides synthesized by L. rhamnosus C6 fermentation of milk. Int J PeptRes Ther, 24(2): 309-321.
  • Rivero-Pino, F., Espejo-Carpio, F.J., Guadix, E.M. (2020). Antidiabetic food-derived peptides for functional feeding: production, functionality and in vivo evidences. Foods, 9(983): 1-33.
  • Rizzello, C., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M., Zambonin, P. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci, 88(7): 2348-2360.
  • Rutherfurd, K.J., Gill, H.S. (2000). Peptides affecting coagulation. Br J Nutr, 84(S1): 99-102.
  • Sanchez, I.R., Del Bosque, A.Q., Ledesma, B.H., Ruiz, J.G., Castro, M.M., Garrido, M.L.A., Exposito, I.L., Gonzalez, M.M.R., De Artiñano, A.A., Gómez, M.C. (2013). Bioactive peptides identified in enzymatic hydrolyzates of milk caseins and method of obtaining same. Google Patents.
  • Santiago-López, L., Hernández-Mendoza, A., Vallejo-Cordoba, B., Mata-Haro, V., GonzálezCórdova, A.F. (2016). Food-derived immunomodulatory peptides. J Sci Food Agric, 96(11): 3631-3641.
  • Sbroggio, M.F., Montilha, M.S., Figueiredo, V.R.G.D., Georgetti, S.R., Kurozawa, L. E. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci Technol, 36(2): 375- 381.
  • Schagen, S.K. (2017). Topical peptide treatments with effective anti-aging results. Cosmetics, 4(16): 1- 14.
  • Sieber, R., Bütikofer, U., Egger, C., Portmann, R., Walther, B., Wechsler, D. (2010). ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Sci Technol, 90(1): 47-73.
  • Skrzypczak, K., Gustaw, W., Szwajgier, D., Fornal, E., Waśko, A. (2017). κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. J Food Sci Technol, 54(11): 3679-3688.
  • Suetsuna, K., Ukeda, H., Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem, 11(3): 128-131.
  • Sultan, S., Huma, N., Butt, M.S., Aleem, M., Abbas, M. (2018). Therapeutic potential of dairy bioactive peptides: A contemporary perspective. Crit Rev Food Sci Nutr, 58(1): 105-115.
  • Vegarud, G.E., Langsrud, T., Svenning, C. (2000). Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Br J Nutr, 84(S1): 91-98.
  • Velasquez, M.T., Bhathena, S.J. (2007). Role of dietary soy protein in obesity. Int J Med Sci, 4(2): 72-82.
  • Verdecchia, P., Angeli, F., Mazzotta, G., Gentile, G., Reboldi, G. (2008). The renin angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction. Vasc Health Risk Manag, 4(5): 971-981.
  • Vinderola, G., Perdigón, G., Matar, C. (2008). Biologically active peptides released in fermented milk: role and functions, In: Handbook of Fermented Functional Foods, Edition 2, CRC Press, Boca Raton, USA, pp. 209-241.
  • Weisel, J. W., Litvinov, R. I. (2017). Fibrin formation, structure and properties. Subcell Biochem, 82: 405-456.
  • Xie, Z., Huang, J., Xu, X., Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem, 111(2): 370-376.
  • Yildirim, Z., Tokatli, M., Öncül, N., Yıldırım, M. (2011). Laktoferrinin biyolojik aktivitesi. Akademik Gıda, 9(6): 52-63.
  • Zhao, N., Tao, K., Wang, G., Xia, Z. (2019). Global obesity research trends during 1999 to 2017: A bibliometric analysis. Medicine, 98(4): 1-7.
  • Zhu, J., Du, M., Wu, M., Yue, P., Yang, X., Wei, X., Wang, Y. (2020). Preparation, physicochemical characterization and identification of two novel mixed ACE-inhibiting peptides from two distinct tea alkali-soluble protein. Eur Food Res Technol, 246(7): 1483-1494.
APA Öztürk H, AKIN N (2021). GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. , 42 - 52. 10.15237/gida.GD20095
Chicago Öztürk Hale İnci,AKIN NIHAT GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. (2021): 42 - 52. 10.15237/gida.GD20095
MLA Öztürk Hale İnci,AKIN NIHAT GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. , 2021, ss.42 - 52. 10.15237/gida.GD20095
AMA Öztürk H,AKIN N GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. . 2021; 42 - 52. 10.15237/gida.GD20095
Vancouver Öztürk H,AKIN N GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. . 2021; 42 - 52. 10.15237/gida.GD20095
IEEE Öztürk H,AKIN N "GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI." , ss.42 - 52, 2021. 10.15237/gida.GD20095
ISNAD Öztürk, Hale İnci - AKIN, NIHAT. "GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI". (2021), 42-52. https://doi.org/10.15237/gida.GD20095
APA Öztürk H, AKIN N (2021). GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA, 46(1), 42 - 52. 10.15237/gida.GD20095
Chicago Öztürk Hale İnci,AKIN NIHAT GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA 46, no.1 (2021): 42 - 52. 10.15237/gida.GD20095
MLA Öztürk Hale İnci,AKIN NIHAT GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA, vol.46, no.1, 2021, ss.42 - 52. 10.15237/gida.GD20095
AMA Öztürk H,AKIN N GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA. 2021; 46(1): 42 - 52. 10.15237/gida.GD20095
Vancouver Öztürk H,AKIN N GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA. 2021; 46(1): 42 - 52. 10.15237/gida.GD20095
IEEE Öztürk H,AKIN N "GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI." GIDA, 46, ss.42 - 52, 2021. 10.15237/gida.GD20095
ISNAD Öztürk, Hale İnci - AKIN, NIHAT. "GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI". GIDA 46/1 (2021), 42-52. https://doi.org/10.15237/gida.GD20095