Yıl: 2020 Cilt: 37 Sayı: 6 Sayfa Aralığı: 309 - 315 Metin Dili: İngilizce DOI: 10.4274/balkanmedj.galenos.2020.2020.6.66 İndeks Tarihi: 07-06-2021

Non-opioid Analgesics and the Endocannabinoid System

Öz:
Non-steroidalanti-inflammatorydrugsproduceantinociceptiveeffectsmainlythroughperipheralcyclooxygenaseinhibition.Inoppositiontotheclassicalnon-steroidalanti-inflammatorydrugs,paracetamolanddipyroneexertweakanti-inflammatoryactivity, their antinociceptive effects appearing to be mostly due to mechanisms other than peripheral cyclooxygenase inhibition. In this review, we classify classical non-steroidal anti-inflammatory drugs, paracetamol and dipyrone as “non-opioid analgesics” and discuss the mechanisms mediating participation of the endocannabinoid system in their antinociceptive effects. Non-opioid analgesics and their metabolites may activate cannabinoid receptors, as well as elevate endocannabinoid levels through different mechanisms: reduction of endocannabinoid degradation via fatty acid amide hydrolase and/or cyclooxygenase-2 inhibition, mobilization of arachidonic acid for the biosynthesis of endocannabinoids due to cyclooxygenase inhibition, inhibition of endocannabinoid cellular uptake directly or through the inhibition of nitric oxide synthase production, and induction of endocannabinoid release.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Pertwee RG. Cannabinoid receptors and pain. Prog Neurobiol 2001;63:569-611.
  • 2. Grotenhermen F, Müller-Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int 2012;109:495-501.
  • 3. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a Cannabinoid Receptor and Functional Expression of the Cloned Cdna. Nature 1990;346:561-4.
  • 4. Munro S, Thomas KL, Abushaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993;365:61-5.
  • 5. Pertwee RG. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 2005;7:625-54.
  • 6. Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci 2012;367:3353-63.
  • 7. Guindon J, Hohmann AG. The Endocannabinoid System and Pain. CNS Neurol Disord Drug Targets 2009;8:403-21.
  • 8. Di Marzo V. Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 2008;160:1-24.
  • 9. Zogopoulos P, Vasileiou I, Patsouris E, Theocharis SE. The role of endocannabinoids in pain modulation. Fundam Clin Pharmacol 2013;27:64-80.
  • 10. Ulugöl A. The endocannabinoid system as a potential therapeutic target for pain modulation. Balkan Med J 2014;31:115-20.
  • 11. Jhaveri MD, Richardson D, Chapman V. Endocannabinoid metabolism and uptake: novel targets for neuropathic and inflammatory pain. Brit J Pharmacol 2007;152:624- 32.
  • 12. Kozak KR, Rowlinson SW, Marnett LJ. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem 2000;275:33744-9.
  • 13. Kozak KR, Marnett LJ. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 2002;66:211-20.
  • 14. Snider NT, Walker VJ, Hollenberg PF. Oxidation of the Endogenous Cannabinoid Arachidonoyl Ethanolamide by the Cytochrome P450 Monooxygenases: Physiological and Pharmacological Implications. Pharmacol Rev 2010;62:136-54.
  • 15. Ulugol A, Karadag HC, Ipci Y, Tamer M, Dokmeci I. The effect of WIN 55,212-2, a cannabinoid agonist, on tactile allodynia in diabetic rats. Neurosci Lett 2004;371:167-70.
  • 16. Ulugol A, Ozyigit F, Yesilyurt O, Dogrul A. The additive antinociceptive interaction between WIN 55,212-2, a cannabinoid agonist, and ketorolac. Anesth Analg 2006;102:443-7.
  • 17. Gunduz O, Karadag HC, Ulugol A. Synergistic anti-allodynic effects of nociceptin/ orphanin FQ and cannabinoid systems in neuropathic mice. Pharmacol Biochem Behav 2011;99:540-4.
  • 18. Wang T, Collet JP, Shapiro S, Ware MA. Adverse effects of medical cannabinoids: a systematic review. CMAJ 2008;178:1669-78.
  • 19. Aizpurua-Olaizola O, Elezgarai I, Rico-Barrio I, Zarandona I, Etxebarria N, Usobiaga A. Targeting the endocannabinoid system: future therapeutic strategies. Drug Discov Today 2017;22:105-10.
  • 20. Vemuri VK, Makriyannis A. Medicinal chemistry of cannabinoids. Clin Pharmacol Ther 2015;97:553-8.
  • 21. Vane JR. Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin- Like Drugs. Nature New Biol 1971;231:232-5.
  • 22. Hamza M, Dionne RA. Mechanisms of non-opioid analgesics beyond cyclooxygenase enzyme inhibition. Curr Mol Pharmacol 2009;2:1-14.
  • 23. Dogrul A, Gul H, Akar A, Yildiz O, Bilgin F, Guzeldemir E. Topical cannabinoid antinociception: synergy with spinal sites. Pain 2003;105:11-6.
  • 24. Manzanares J, Julian MD, Carrascosa A. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr Neuropharmacol 2006;4:239-57.
  • 25. Maione S, Radanova L, De Gregorio D, Luongo L, De Petrocellis L, Di Marzo V, et al. Effects of metabolites of the analgesic agent dipyrone (metamizol) on rostral ventromedial medulla cell activity in mice. Eur J Pharmacol 2015;748:115-22.
  • 26. Vazquez E, Escobar W, Ramirez K, Vanegas H. A nonopioid analgesic acts upon the PAG-RVM axis to reverse inflammatory hyperalgesia. Eur J Neurosci 2007;25:471-9.
  • 27. Fowler CJ. NSAIDs: eNdocannabinoid stimulating anti-inflammatory drugs? Trends Pharmacol Sci 2012;33:468-73.
  • 28. Mallet C, Daulhac L, Bonnefont J, Ledent C, Etienne M, Chapuy E, et al. Endocannabinoid and serotonergic systems are needed for acetaminophen-induced analgesia. Pain 2008;139:190-200.
  • 29. Rogosch T, Sinning C, Podlewski A, Watzer B, Schlosburg J, Lichtman AH, et al. Novel bioactive metabolites of dipyrone (metamizol). Bioorg Med Chem 2012;20:101-7.
  • 30. Schlosburg JE, Radanova L, Di Marzo V, Imming P, Lichtman AH. Evaluation of the endogenous cannabinoid system in mediating the behavioral effects of dipyrone (metamizol) in mice. Behav Pharmacol 2012;23:722-6.
  • 31. Paria BC, Deutsch DD, Dey SK. The uterus is a potential site for anandamide synthesis and hydrolysis: Differential profiles of anandamide synthase and hydrolase activities in the mouse uterus during the periimplantation period. Mol Reprod Dev 1996;45:183-92.
  • 32. Fowler CJ, Janson U, Johnson RM, Wahlström G, Stenström A, Norström A, et al. Inhibition of anandamide hydrolysis by the enantiomers of ibuprofen, ketorolac, and flurbiprofen. Arch Biochem Biophys 1999;362:191-6.
  • 33. Fowler CJ, Tiger G, Stenström A. Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure-activity relationship. J Pharmacol Exp Ther 1997;283:729-34.
  • 34. Karlsson J, Fowler CJ. Inhibition of Endocannabinoid Metabolism by the Metabolites of Ibuprofen and Flurbiprofen. Plos One 2014;9:e103589.
  • 35. Fowler CJ, Holt S, Tiger G. Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. J Enzym Inhib Med Chem 2003;18:55-8.
  • 36. Holt S, Fowler CJ. Anandamide metabolism by fatty acid amide hydrolase in intact C6 glioma cells. Increased sensitivity to inhibition by ibuprofen and flurbiprofen upon reduction of extra- but not intracellular pH. Naunyn Schmiedebergs Arch Pharmacol 2003;367:237-44.
  • 37. Holt S, Nilsson J, Omeir R, Tiger G, Fowler CJ. Effects of pH on the inhibition of fatty acid amidohydrolase by ibuprofen. Br J Pharmacol 2001;133:513-20.
  • 38. Guindon J, Beaulieu P. Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain. Neuropharmacology 2006;50:814-23.
  • 39. Guindon J, De Lean A, Beaulieu P. Local interactions between anandamide, an endocannabinoid, and ibuprofen, a nonsteroidal anti-inflammatory drug, in acute and inflammatory pain. Pain 2006;121:85-93.
  • 40. Holt S, Comelli F, Costa B, Fowler CJ. Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors. Brit J Pharmacol 2005;146:467-76.
  • 41. Fowler CJ, Björklund E, Lichtman AH, Naidu PS, Congiu C, Onnis V. Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide. J Enzym Inhib Med Chem 2013;28:172-82.
  • 42. Duggan KC, Hermanson DJ, Musee J, Prusakiewicz JJ, Scheib JL, Carter BD, et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat Chem Biol 2011;7:803-9.
  • 43. Cipriano M, Björklund E, Wilson AA, Congiu C, Onnis V, Fowler CJ. Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl) amide derivatives of flurbiprofen and naproxen. Eur J Pharmacol 2013;720:383- 90.
  • 44. Prusakiewicz JJ, Duggan KC, Rouzer CA, Marnett LJ. Differential Sensitivity and Mechanism of Inhibition of COX-2 Oxygenation of Arachidonic Acid and 2-Arachidonoylglycerol by Ibuprofen and Mefenamic Acid. Biochemistry 2009;48:7353-5.
  • 45. Naidu PS, Booker L, Cravatt BF, Lichtman AH. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther 2009;329:48-56.
  • 46. Piscitelli F, Di Marzo V. “Redundancy” of Endocannabinoid Inactivation: New Challenges and Opportunities for Pain Control. ACS Chem Neurosci 2012;3:356-63.
  • 47. Crunfli F, Vilela FC, Giusti-Paiva A. Cannabinoid CB1 receptors mediate the effects of dipyrone. Clin Exp Pharmacol Physiol 2015;42:246-55.
  • 48. Pestonjamasp VK, Burstein SH. Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system. Biochim Biophys Acta 1998;1394:249-60.
  • 49. Gühring H, Hamza M, Sergejeva M, Ates M, Kotalla CE, Ledent C, et al. A role for endocannabinoids in indomethacin-induced spinal antinociception. Eur J Pharmacol 2002;454:153-63.
  • 50. Ates M, Hamza M, Seidel K, Kotalla CE, Ledent C, Gühring H. Intrathecally applied flurbiprofen produces an endocannabinoid-dependent antinociception in the rat formalin test. Eur J Neurosci 2003;17:597-604.
  • 51. Rezende RM, Paiva-Lima P, Dos Reis WGP, Camelo VM, Faraco A, Bakhle YS, et al. Endogenous Opioid and Cannabinoid Mechanisms Are Involved in the Analgesic Effects of Celecoxib in the Central Nervous System. Pharmacology 2012;89:127-36.
  • 52. Silva LCR, Romero TRL, Guzzo LS, Duarte IDG. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs. Braz J Med Biol Res 2012;45:1240-3.
  • 53. Chatzisali B, Gaş T, Kılgın H, Duvan Aydemir K, Erümit D, Topuz RD, et al. Cannabinoid receptors are not involved in antinociception induced by systemic diclofenac in mice. Turkish Med Stud J 2020;7:1-4.
  • 54. Anikwue R, Huffman JW, Martin ZL, Welch SP. Decrease in efficacy and potency of nonsteroidal anti-inflammatory drugs by chronic Delta(9)-tetrahydrocannabinol administration. J Pharmacol Exp Ther 2002;303:340-6.
  • 55. Staniaszek LE, Norris LM, Kendall DA, Barrett DA, Chapman V. Effects of COX- 2 inhibition on spinal nociception: the role of endocannabinoids. Br J Pharmacol 2010;160:669-76.
  • 56. Jozwiak-Bebenista M, Nowak JZ. Paracetamol: Mechanism of Action, Applications and Safety Concern. Acta Pol Pharm 2014;71:11-23.
  • 57. Bujalska M. Effect of nonselective and selective opioid receptors antagonists on antinociceptive action of acetaminophen [Part III]. Pol J Pharmacol 2004;56:539-45.
  • 58. Flower RJ, Vane JR. Inhibition of Prostaglandin Synthetase in Brain Explains the Anti-Pyretic Activity of Paracetamol (4-Acetamidophenol). Nature 1972;240:410-1.
  • 59. Pini LA, Sandrini M, Vitale G. The antinociceptive action of paracetamol is associated with changes in the serotonergic system in the rat brain. Eur J Pharmacol 1996;308:31-40.
  • 60. Ryu YS, Lee JH, Seok JH, Hong JH, Lee YS, Lim JH, et al. Acetaminophen inhibits iNOS gene expression in RAW 264.7 macrophages: Differential regulation of NF-kappaB by acetaminophen and salicylates. Biochem Bioph Res Commun 2000;272:758-64.
  • 61. Högestätt ED, Jönsson BA, Ermund A, Andersson DA, Björk H, Alexander JP, et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J Biol Chem 2005;280:31405-12.
  • 62. Dani M, Guindon J, Lambert C, Beaulieu P. The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors. Eur J Pharmacol 2007;573:214-5.
  • 63. Ottani A, Leone S, Sandrini M, Ferrari A, Bertolini A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur J Pharmacol 2006;531:280-1.
  • 64. Di Marzo V, Bisogno T, De Petrocellis L, Brandi I, Jefferson RG, Winckler RL, et al. Highly selective CB1 cannabinoid receptor ligands and novel CB1/VR1 vanilloid receptor “hybrid” ligands. Biochem Biophys Res Commun 2001;281:444-51.
  • 65. Giuffrida A, Beltramo M, Piomelli D. Mechanisms of endocannabinoid inactivation: Biochemistry and pharmacology. J Pharmacol Exp Ther 2001;298:7-14.
  • 66. Glaser ST, Abumrad NA, Fatade F, Kaczocha M, Studholme KM, Deutsch DG. Evidence against the presence of an anandamide transporter. Proc Natl Acad Sci U S A 2003;100:4269-74.
  • 67. Zygmunt PM, Chuang H, Movahed P, Julius D, Högestatt ED. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur J Pharmacol 2000;396:39- 42.
  • 68. Hama AT, Sagen J. Cannabinoid receptor-mediated antinociception with acetaminophen drug combinations in rats with neuropathic spinal cord injury pain. Neuropharmacology 2010;58:758-66.
  • 69. Haller VL, Cichewicz DL, Welch SP. Non-cannabinoid CB1, non-cannabinoid CB2 antinociceptive effects of several novel compounds in the PPQ stretch test in mice. Eur J Pharmacol 2006;546:60-8.
  • 70. Topuz RD, Gunduz O, Karadag HC, Dokmeci D, Ulugol A. Endocannabinoid and N-acylethanolamide levels in rat brain and spinal cord following systemic dipyrone and paracetamol administration. Can J Physiol Pharmacol 2019;97:1035-41.
  • 71. Umathe SN, Manna SSS, Utturwar KS, Jain NS. Endocannabinoids mediate anxiolyticlike effect of acetaminophen via CB1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:1191-9.
  • 72. Gould GG, Seillier A, Weiss G, Giuffrida A, Burke TF, Hensler JG, et al. Acetaminophen differentially enhances social behavior and cortical cannabinoid levels in inbred mice. Prog Neuropsychopharmacol 2012;38:260-9.
  • 73. Saglam G, Gunduz O, Ulugol A. Blockade of cannabinoid CB1 and CB2 receptors does not prevent the antipruritic effect of systemic paracetamol. Acta Neurol Belg 2014;114:307-9.
  • 74. Akman H, Aksu F, Gultekin I, Ozbek H, Oral U, Doran F, et al. A possible central antinociceptive effect of dipyrone in mice. Pharmacology 1996;53:71-8.
  • 75. Carlsson KH, Jurna I. The Role of Descending Inhibition in the Antinociceptive Effects of the Pyrazolone Derivatives, Metamizol (Dipyrone) and Aminophenazone (Pyramidon). Naunyn Schmiedebergs Arch Pharmacol 1987;335:154-9.
  • 76. Gencer A, Gunduz O, Ulugol A. Involvement of descending serotonergic and noradrenergic systems and their spinal receptor subtypes in the antinociceptive effect of dipyrone. Drug Res (Stuffg) 2015;65:645-9.
  • 77. Vasquez E, Vanegas H. The antinociceptive effect of PAG-microinjected dipyrone in rats is mediated by endogenous opioids of the rostral ventromedial medulla. Brain Res 2000;854:249-52.
  • 78. Vanegas H, Tortorici V. Opioidergic effects of nonopioid analgesics on the central nervous system. Cell Mol Neurobiol 2002;22:655-61.
  • 79. Hernandez N, Vanegas H. Antinociception induced by PAG-microinjected dipyrone (metamizol) in rats: involvement of spinal endogenous opioids. Brain Res 2001;896:175-8.
  • 80. Tortorici V, Vanegas H. Opioid tolerance induced by metamizol (dipyrone) microinjections into the periaqueductal grey of rats. Eur J Neurosci 2000;12:4074-80.
  • 81. Vazquez E, Hernandez N, Escobar W, Vanegas H. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats. Brain Res 2005;1048:211-7.
  • 82. Campos C, de Gregorio R, Garcia-Nieto R, Gago F, Ortiz P, Alemany S. Regulation of cyclooxygenase activity by metamizol. Eur J Pharmacol 1999;378:339-47.
  • 83. Lorenzetti BB, Ferreira SH. Activation of the arginine-nitric oxide pathway in primary sensory neurons contributes to dipyrone-induced spinal and peripheral analgesia. Inflamm Res 1996;45:308-11.
  • 84. Miranda HF, Noriega V, Sierralta F, Poblete P, Aranda N, Prieto JC. Nitric Oxide and Opioids Involvement in Isobolographic Nsaids Antinociception. Drug Res (Stuttg) 2019;69:688-94.
  • 85. Yilmaz I, Ulugol A. The effect of nitric oxide synthase Inhibitors on the development of analgesic tolerance to dipyrone in mice. Int J Neurosci 2009;119:755-64.
  • 86. Escobar W, Ramirez K, Avila C, Limongi R, Vanegas H, Vazquez E. Metamizol, a non-opioid analgesic, acts via endocannabinoids in the PAG-RVM axis during inflammation in rats. Eur J Pain 2012;16:676-89.
  • 87. Elmas P, Ulugol A. Involvement of cannabinoid CB1 receptors in the antinociceptive effect of dipyrone. J Neural Transm (Vienna) 2013;120:1533-8.
  • 88. dos Santos GG, Dias EV, Teixeira JM, Athie MC, Bonet IJ, Tambeli CH, et al. The analgesic effect of dipyrone in peripheral tissue involves two different mechanisms: Neuronal K (ATP) channel opening and CB (1) receptor activation. Eur J Pharmacol 2014;741:124-31.
  • 89. Russo S, de Azevedo WF Jr. Computational Analysis of Dipyrone Metabolite 4-Aminoantipyrine as a Cannabinoid Receptor 1 Agonist. Curr Med Chem 2019 Sep 6. PubMed PMID: 31490743. Epub 2019/09/07.
  • 90. Gonçalves Dos Santos G, Vieira WF, Vendramini PH, Bassani da Silva B, Fernandes Magalhães S, Tambeli CH, et al. Dipyrone is locally hydrolyzed to 4-methylaminoantipyrine and its antihyperalgesic effect depends on CB2 and kappaopioid receptors activation. Eur J Pharmacol 2020;874:173005.
  • 91. Topuz RD, Gunduz O, Dokmeci D, Karadag CH, Ulugol A. Does dipyrone produce anxiolytic-like effects in mice? Cukurova Med J 2019;44:866-74 (in Turkish).
  • 92. Vaughan CW, Connor M, Bagley EE, Christie MJ. Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol Pharmacol 2000;57:288-95.
  • 93. Dogrul A, Seyrek M, Yalcin B, Ulugol A. Involvement of descending serotonergic and noradrenergic pathways in CB1 receptor-mediated antinociception. Prog Neuropsychopharmacol Biol Psychiatry 2012;38:97-105.
  • 94. Vanegas H, Vazquez E, Tortorici V. NSAIDs, opioids, cannabinoids and the control of pain by the central nervous system. Pharmaceuticals (Basel) 2010;3:1335-47.
  • 95. Vaughan CW, McGregor IS, Christie MJ. Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. Brit J Pharmacol 1999;127:935-40.
  • 96. Bisogno T, Maccarrone M, De Petrocellis L, Jarrahian A, Finazzi-Agro A, Hillard C, et al. The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. Eur J Biochem 2001;268:1982-9.
  • 97. Maccarrone M, Bari M, Lorenzon T, Bisogno T, Di Marzo V, Finazzi-Agro A. Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem 2000;275:13484-92.
APA TOPUZ R, GÜNDÜZ Ö, KARADAĞ Ç, Ulugol A (2020). Non-opioid Analgesics and the Endocannabinoid System. , 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
Chicago TOPUZ Ruhan Deniz,GÜNDÜZ Özgür,KARADAĞ Çetin Hakan,Ulugol Ahmet Non-opioid Analgesics and the Endocannabinoid System. (2020): 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
MLA TOPUZ Ruhan Deniz,GÜNDÜZ Özgür,KARADAĞ Çetin Hakan,Ulugol Ahmet Non-opioid Analgesics and the Endocannabinoid System. , 2020, ss.309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
AMA TOPUZ R,GÜNDÜZ Ö,KARADAĞ Ç,Ulugol A Non-opioid Analgesics and the Endocannabinoid System. . 2020; 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
Vancouver TOPUZ R,GÜNDÜZ Ö,KARADAĞ Ç,Ulugol A Non-opioid Analgesics and the Endocannabinoid System. . 2020; 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
IEEE TOPUZ R,GÜNDÜZ Ö,KARADAĞ Ç,Ulugol A "Non-opioid Analgesics and the Endocannabinoid System." , ss.309 - 315, 2020. 10.4274/balkanmedj.galenos.2020.2020.6.66
ISNAD TOPUZ, Ruhan Deniz vd. "Non-opioid Analgesics and the Endocannabinoid System". (2020), 309-315. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.6.66
APA TOPUZ R, GÜNDÜZ Ö, KARADAĞ Ç, Ulugol A (2020). Non-opioid Analgesics and the Endocannabinoid System. Balkan Medical Journal, 37(6), 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
Chicago TOPUZ Ruhan Deniz,GÜNDÜZ Özgür,KARADAĞ Çetin Hakan,Ulugol Ahmet Non-opioid Analgesics and the Endocannabinoid System. Balkan Medical Journal 37, no.6 (2020): 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
MLA TOPUZ Ruhan Deniz,GÜNDÜZ Özgür,KARADAĞ Çetin Hakan,Ulugol Ahmet Non-opioid Analgesics and the Endocannabinoid System. Balkan Medical Journal, vol.37, no.6, 2020, ss.309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
AMA TOPUZ R,GÜNDÜZ Ö,KARADAĞ Ç,Ulugol A Non-opioid Analgesics and the Endocannabinoid System. Balkan Medical Journal. 2020; 37(6): 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
Vancouver TOPUZ R,GÜNDÜZ Ö,KARADAĞ Ç,Ulugol A Non-opioid Analgesics and the Endocannabinoid System. Balkan Medical Journal. 2020; 37(6): 309 - 315. 10.4274/balkanmedj.galenos.2020.2020.6.66
IEEE TOPUZ R,GÜNDÜZ Ö,KARADAĞ Ç,Ulugol A "Non-opioid Analgesics and the Endocannabinoid System." Balkan Medical Journal, 37, ss.309 - 315, 2020. 10.4274/balkanmedj.galenos.2020.2020.6.66
ISNAD TOPUZ, Ruhan Deniz vd. "Non-opioid Analgesics and the Endocannabinoid System". Balkan Medical Journal 37/6 (2020), 309-315. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.6.66