Yıl: 2020 Cilt: 31 Sayı: 6 Sayfa Aralığı: 415 - 424 Metin Dili: İngilizce DOI: 10.5152/tjg.2020.19143 İndeks Tarihi: 15-05-2021

Stem cell therapy: a potential for the perils of pancreatitis

Öz:
Acute and chronic pancreatitides carry a significant disease burden with no definite treatment. They are associated with local and systemic inflammation and lead to numerous complications. Stem cell therapy has been explored for treating other diseases and has gained momentum due to its implications for acute and chronic pancreatitis. Stem cell therapy not only has the potential to aid regeneration but can also prevent pancreatic injury, injury to other organs along with the resultant complications. Stem cells appear to have immunomodulatory properties and clinical potential as evidenced by numerous studies conducted on animal models. This review discusses commonly used stem cells and their respective properties that show promise for treating pancreatitis.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Sarles H. Revised classification of pancreatitis--Marseille 1984. Dig Dis Sci 1985; 30: 573-4. [Crossref]
  • 2. Bhatia M, Wong FL, Cao Y, et al. Pathophysiology of acute pancreatitis. Pancreatology 2005; 5: 132-44. [Crossref]
  • 3. Banks PA, Freeman ML. Practice guidelines in acute pancreatitis. Am J Gastroenterol 2006; 101: 2379. [Crossref]
  • 4. Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis. J Pathol 2000; 190: 117-25. [Crossref]
  • 5. Granger J, Remick D. Acute pancreatitis: models, markers, and mediators. Shock 2005; 24: 45-51. [Crossref]
  • 6. Petrov MS, Shanbhag S, Chakraborty M, Phillips AR, Windsor JA. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancreatitis. Gastroenterology 2010; 139: 813-20. [Crossref]
  • 7. Eşrefoğlu M, Gül M, Ates B, Batçioğlu K, Selimoğlu MA. Antioxidative effect of melatonin, ascorbic acid and N-acetylcysteine on caerulein-induced pancreatitis and associated liver injury in rats. World J Gastroenterol 2006; 12: 259-64. [Crossref]
  • 8. Eşrefoğlu M, Gül M, Ateş B, Selimoğlu MA. Ultrastructural clues for the protective effect of melatonin against oxidative damage in cerulein-induced pancreatitis. J Pineal Res 2006; 40: 92-7. [Crossref]
  • 9. Esrefoglu M. Stem Cell Therapies on Pancreatitis. In: Rodrigo L, editor. Acute and Chronic Pancreatitis. Rijeka: InTech; 2015. p. Ch. 08. https://doi.org/10.5772/58883
  • 10. Ben Nasr M, Frumento D, Fiorina P. Adipose Stem Cell Therapy for Chronic Pancreatitis. Molecular Therapy 2017; 25: 2438-9.
  • 11. Karaoz E, Okcu A, Unal ZS, et al. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulinproducing cells in pancreatic islet microenvironment both in vitro and in vivo. Cytotherapy 2013; 15: 557-70. [Crossref]
  • 12. Jung KH, Song SU, Yi T, et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology 2011; 140: 998-1008. [Crossref]
  • 13. Schneider G, Saur D. Mesenchymal Stem Cells: Therapeutic Potential for Acute Pancreatitis. Gastroenterology 2011; 140: 779-82. [Crossref]
  • 14. Pittenger MF, Mackay AM, Beck SC, et al. Multiline age potential of adult human mesenchymal stem cells. Science 1999; 284:143-7. [Crossref]
  • 15. Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 2011; 8: 281-93. [Crossref]
  • 16. Xu X, D’Hoker J, Stangé G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132: 197-207. [Crossref]
  • 17. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 2007; 13: 103-14. [Crossref]
  • 18. Gong J, Tian F, Ren J, Luo G. Experimental evidence supporting the lack of primary stem cells in adult pancreatic tissue. Pancreatology 2010; 10: 620-30. [Crossref]
  • 19. Wang Y, Lanzoni G, Carpino G, et al. Biliary tree stem cells, precursors to pancreatic committed progenitors: evidence for possible life-long pancreatic organogenesis. Stem Cells 2013; 31: 1966-19. [Crossref]
  • 20. Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T, Sharma A. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabet 2004; 5: 16-22. [Crossref]
  • 21. Inada A, Nienaber C, Katsuta H, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 2008; 105: 19915-9. [Crossref]
  • 22. Strobel O, Rosow DE, Rakhlin EY, et al. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology 2010; 138: 1166-77. [Crossref]
  • 23. Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS. Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci U S A 2007; 104: 10500-5. [Crossref]
  • 24. Maestro MA, Boj SF, Luco RF, et al. Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Human Mol Genet 2003; 12: 3307-14. [Crossref]
  • 25. Jensen J. Gene regulatory factors in pancreatic development. Dev Dyn 2004; 229: 176-200. [Crossref]
  • 26. Villasenor A, Chong DC, Henkemeyer M, Cleaver O. Epithelial dynamics of pancreatic branching morphogenesis. Development 2010; 137: 4295-305. [Crossref]
  • 27. Solar M, Cardalda C, Houbracken I, et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev Cell 2009, 17: 849-60. [Crossref]
  • 28. Seymour PA, Freude KK, Dubois CL, Shih HP, Patel NA, Sander M. A dosage-dependent requirement for Sox9 in pancreatic endocrine cell formation. Dev Biol 2008; 323: 19-30. [Crossref]
  • 29. Anderson KR, Singer RA, Balderes DA, et al. The L6 domain tetraspanin Tm4sf4 regulates endocrine pancreas differentiation and directed cell migration. Development 2011; 138: 3213-24. [Crossref]
  • 30. Cole L, Anderson M, Antin PB, Limesand SW. One process for pancreatic beta-cell coalescence into islets involves an epithelial-mesenchymal transition. J Endocrinol 2009; 203: 19-31. [Crossref]
  • 31. Rukstalis JM, Habener JF. Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Exp Patterns 2007; 7: 471-9. [Crossref]
  • 32. Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. Wiley Interdiscip Rev Dev Biol 2013; 2: 531-44. [Crossref]
  • 33. Taguchi M, Yamaguchi T, Otsuki M. Induction of PDX-1-positive cells in the main duct during regeneration after acute necrotizing pancreatitis in rats. J Pathol 2002; 197: 638-46. [Crossref]
  • 34.Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 2016; 18: 238. [Crossref]
  • 35. Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci U S A 2010; 107: 75-80. [Crossref]
  • 36. Cui HF, Bai ZL. Protective effects of transplanted and mobilized bone marrow stem cells on mice with severe acute pancreatitis. World J Gastroenterol 2003; 9: 2274-7. [Crossref]
  • 37. Tu XH, Song JX, Xue XJ, et al. Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis. World J Gastroenterol 2012; 18: 2270-9. [Crossref]
  • 38. Chen Z, Lu F, Fang H, Huang H. Effect of mesenchymal stem cells on renal injury in rats with severe acute pancreatitis. Exp Biol Med (Maywood) 2013; 238: 687-95. [Crossref]
  • 39. Sun XC, Wu JS, Wu JM, Huang ZM, Yu Z. [Effects of intraperitoneal injection of marrow mesenchymal stem cells on intestinal barrier in acute pancreatitis]. Zhonghua Yi Xue Za Zhi 2013; 93: 951-5.
  • 40. Wang L, Tu XH, Zhao P, Song JX, Zou ZD. Protective effect of transplanted bone marrow-derived mesenchymal stemcells on pancreatitis-associated lung injury in rats. Mol Med Rep 2012; 6: 287-92. [Crossref]
  • 41. Jung KH, Song SU, Yi T, et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology 2011; 140: 998-1008. [Crossref]
  • 42. Baek SJ, Kang SK, Ra JC. In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 2011; 43: 596-603. [Crossref]
  • 43. Kim HW, Song WJ, Li Q, et al. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats. J Vet Sci 2016; 17: 539-48. [Crossref]
  • 44. Yang B, Bai B, Liu CX, et al. Effect of umbilical cord mesenchymal stem cells on treatment of severe acute pancreatitis in rats. Cytotherapy 2013; 15: 154-62. [Crossref]
  • 45. Zhou CH, Li ML, Qin AL, et al. Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas 2013; 42: 1291- 302. [Crossref]
  • 46. Takahashi K, Yamanaka S. “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”. Cell 2006; 126: 663-76. [Crossref]
  • 47. Charles A. Goldthwaite, Jr. The Promise of Induced Pluripotent Stem Cells (iPSCs). [Stem Cell information] Bethesda, MD: National institutes of Health, 2016. stemcells.nih.gov/info/Regenerative_ Medicine/2006Chapter10.htm.
  • 48. Hu BY, Weick JP, Yu J, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 2010; 107: 4335-40. [Crossref]
  • 49. Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009; 104: e30-e41. [Crossref]
  • 50. Kuzmenkin A, Liang H, Xu G, et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J 2009; 23: 4168-80. [Crossref]
  • 51. Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008; 118: 507-17. [Crossref]
  • 52. Jacobson E, Tzanakakis E. Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. J Biol Eng 2017; 11: 21. [Crossref]
  • 53. Southard S, Kotipatruni R, Rust W. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PLoS One 2018; 13: e0203126. [Crossref]
  • 54. Kawakubo K, Ohnishi S, Kuwatani M, Sakamoto N. Mesenchymal stem cell therapy for acute and chronic pancreatitis. J Gastroenterol 2018; 53: 1-5. [Crossref]
  • 55. Hou YC, Huang CF, Wang HC, Wu Y, Shan YS. Therapeutic Efficacy of Spleen-Derived Mesenchymal Stem Cells in Mice with Acute Pancreatitis. J Stem Cell Res Ther 2015; 5: 318. [Crossref]
  • 56. Sun Z, Gou W, Kim DS, et al. Adipose Stem Cell Therapy Mitigates Chronic Pancreatitis via Differentiation into Acinar-like Cells in Mice. Mol Ther 2017; 25: 2490-501. [Crossref]
  • 57. Grinnemo K, Kumagai-Braesch M, Mânsson-Broberg A, et al. Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online 2006; 13: 712-24. [Crossref]
  • 58. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890-6. [Crossref]
  • 59. Nauta A. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108: 2114-20. [Crossref]
  • 60. Poncelet A, Vercruysse J, Saliez A, Gianello P. Although Pig Allogeneic Mesenchymal Stem Cells Are Not Immunogenic In Vitro, Intracardiac Injection Elicits an Immune Response In Vivo. Transplantation 2007; 83: 783-90. [Crossref]
  • 61. Grinnemo K, Månsson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med 2006; 38: 144-53. [Crossref]
  • 62. Inoue S, Popp F, Koehl G, et al. Immunomodulatory Effects of Mesenchymal Stem Cells in a Rat Organ Transplant Model. Transplantation 2006; 81: 1589-95. [Crossref]
  • 63. Lin C, Lin G, Lue T. Allogeneic and Xenogeneic Transplantation of Adipose-Derived Stem Cells in Immunocompetent Recipients Without Immunosuppressants. Stem Cells Dev 2012; 21: 2770-8. [Crossref]
  • 64. Huang X, Sun Z, Miyagi Y, et al. Differentiation of Allogeneic Mesenchymal Stem Cells Induces Immunogenicity and Limits Their Long-Term Benefits for Myocardial Repair. Circulation 2010; 122: 2419-29. [Crossref]
  • 65. Večerić-Haler Ž, Cerar A, Perše M. (Mesenchymal) Stem CellBased Therapy in Cisplatin-Induced Acute Kidney Injury Animal Model: Risk of Immunogenicity and Tumorigenicity. Stem Cells Int. 2017; 2017: 7304643. [Crossref]
  • 66. Houghton J. Gastric Cancer Originating from Bone Marrow-Derived Cells. Science 2004; 306: 1568-71. [Crossref]
  • 67. Yang J, Su J, Xi S, et al. Human umbilical cord mesenchymal stem cells pretreated with Angiotensin-II attenuate pancreas injury of rats with severe acute pancreatitis. Biomed Pharmacother 2019; 117: 109052. [Crossref]
  • 68. Song G, Ma Z, Liu D, et al. Bone marrow-derived mesenchymal stem cells attenuate severe acute pancreatitis via regulation of microRNA-9 to inhibit necroptosis in rats. Life Sci 2019; 223: 9-21. [Crossref]
  • 69. Ma Z, Song G, Liu D, et al. N-Acetylcysteine enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation in rats with severe acute pancreatitis. Pancreatology 2019; 19: 258-65. [Crossref]
  • 71. Hua J, He ZG, Qian DH, et al. Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol 2014; 7: 3580-95.
  • 72. Jung KH, Yi T, Son MK, Song SU, Hong SS. Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis. Arch Pharm Res 2015; 38: 742-51. [Crossref]
  • 73. Zhao H, He Z, Huang D, et al. Infusion of Bone Marrow Mesenchymal Stem Cells Attenuates Experimental Severe Acute Pancreatitis in Rats. Stem Cells Int 2016; 2016: 7174319. [Crossref]
  • 74. Kawakubo K, Ohnishi S, Fujita H, et al. Effect of Fetal Membrane-Derived Mesenchymal Stem Cell Transplantation in Rats with Acute and Chronic Pancreatitis. Pancreas 2016; 45: 707-13. [Crossref]
  • 75. Marrache F, Pendyala S, Bhagat G, Betz KS, Song Z, Wang TC. Role of bone marrow-derived cells in experimental chronic pancreatitis. Gut 2008; 57: 1113-20. [Crossref]
  • 76. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: The ARRIVE guidelines. PLoS Biol 2010; 8: e1000412. [Crossref]
APA Chela H, Romana B, Madabattula M, Albarrak A, Yousef M, samiullah s, Tahan V (2020). Stem cell therapy: a potential for the perils of pancreatitis. , 415 - 424. 10.5152/tjg.2020.19143
Chicago Chela Harleen,Romana Bhupinder,Madabattula Markandeya,Albarrak Abdulmajeed,Yousef Mohamad,samiullah sami,Tahan Veysel Stem cell therapy: a potential for the perils of pancreatitis. (2020): 415 - 424. 10.5152/tjg.2020.19143
MLA Chela Harleen,Romana Bhupinder,Madabattula Markandeya,Albarrak Abdulmajeed,Yousef Mohamad,samiullah sami,Tahan Veysel Stem cell therapy: a potential for the perils of pancreatitis. , 2020, ss.415 - 424. 10.5152/tjg.2020.19143
AMA Chela H,Romana B,Madabattula M,Albarrak A,Yousef M,samiullah s,Tahan V Stem cell therapy: a potential for the perils of pancreatitis. . 2020; 415 - 424. 10.5152/tjg.2020.19143
Vancouver Chela H,Romana B,Madabattula M,Albarrak A,Yousef M,samiullah s,Tahan V Stem cell therapy: a potential for the perils of pancreatitis. . 2020; 415 - 424. 10.5152/tjg.2020.19143
IEEE Chela H,Romana B,Madabattula M,Albarrak A,Yousef M,samiullah s,Tahan V "Stem cell therapy: a potential for the perils of pancreatitis." , ss.415 - 424, 2020. 10.5152/tjg.2020.19143
ISNAD Chela, Harleen vd. "Stem cell therapy: a potential for the perils of pancreatitis". (2020), 415-424. https://doi.org/10.5152/tjg.2020.19143
APA Chela H, Romana B, Madabattula M, Albarrak A, Yousef M, samiullah s, Tahan V (2020). Stem cell therapy: a potential for the perils of pancreatitis. Turkish Journal of Gastroenterology, 31(6), 415 - 424. 10.5152/tjg.2020.19143
Chicago Chela Harleen,Romana Bhupinder,Madabattula Markandeya,Albarrak Abdulmajeed,Yousef Mohamad,samiullah sami,Tahan Veysel Stem cell therapy: a potential for the perils of pancreatitis. Turkish Journal of Gastroenterology 31, no.6 (2020): 415 - 424. 10.5152/tjg.2020.19143
MLA Chela Harleen,Romana Bhupinder,Madabattula Markandeya,Albarrak Abdulmajeed,Yousef Mohamad,samiullah sami,Tahan Veysel Stem cell therapy: a potential for the perils of pancreatitis. Turkish Journal of Gastroenterology, vol.31, no.6, 2020, ss.415 - 424. 10.5152/tjg.2020.19143
AMA Chela H,Romana B,Madabattula M,Albarrak A,Yousef M,samiullah s,Tahan V Stem cell therapy: a potential for the perils of pancreatitis. Turkish Journal of Gastroenterology. 2020; 31(6): 415 - 424. 10.5152/tjg.2020.19143
Vancouver Chela H,Romana B,Madabattula M,Albarrak A,Yousef M,samiullah s,Tahan V Stem cell therapy: a potential for the perils of pancreatitis. Turkish Journal of Gastroenterology. 2020; 31(6): 415 - 424. 10.5152/tjg.2020.19143
IEEE Chela H,Romana B,Madabattula M,Albarrak A,Yousef M,samiullah s,Tahan V "Stem cell therapy: a potential for the perils of pancreatitis." Turkish Journal of Gastroenterology, 31, ss.415 - 424, 2020. 10.5152/tjg.2020.19143
ISNAD Chela, Harleen vd. "Stem cell therapy: a potential for the perils of pancreatitis". Turkish Journal of Gastroenterology 31/6 (2020), 415-424. https://doi.org/10.5152/tjg.2020.19143