SAMET HASAN ABACI
(Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi Zootekni Bölümü, TR-55139, Samsun, TÜRKİYE)
Yıl: 2021Cilt: 27Sayı: 1ISSN: 1300-6045 / 1309-2251Sayfa Aralığı: 1 - 6İngilizce

69 0
Comparison of Diff erent Order and Heterogeneous Residual Variances Legendre Polynomials in Random Regression Models
In this study, it was aimed to estimate covariance function, covariance components, permanent environmental eff ect, additive genetic eff ect and heritability values, and comparison of models with diff erent order and heterogeneous residual variances Legendre Polynomials in the first lactation Turkish Holstein cows more than 10 test day milk yields. For this aim, 7340 test day records of 386 Holstein Friesian cows in the first lactation raised in private dairy farm calving from 2013 to 2018 in Kırşehir-Turkey were used. The six Legendre polynomial models by random regression described as L(2,2), L(3,3), L(4,4), L(5,5), L(6,6) and L(7,7) were evaluated using first lactation test day records. Heterogeneous residual variances (RV) were modeled by considering five sub-classes. Analyzes were performed using the WOMBAT statistical package. In comparison of the models, -2LogL, Akaike Information Criterion (AIC), Bayes Information Criterion (BIC) and RV were used. Also, the compatibility of random regression models was examined in terms of eigenvalues of covariance matrices. The values of -2LogL (between 28334.16 and 26610.07), AIC (between 28356.16 and 26732.07) and BIC values (between 28432.05 and 27129.21) obtained from the study result decreased as the model order increased. As a result, it was determined that the 3rd degree Legendre polynomial model can provide sufficient compliance. However, when looking at the values for -2LogL, AIC and RV, it was determined that the L(7,7) model fits well according to other models.
DergiAraştırma MakalesiErişime Açık
  • 1. Çankaya S, Takma Ç, Abaci SH, Ülker M: A comparison of some random regression models for first lactation test day milk yields in jersey cows and estimating of genetic parameters. Kafkas Univ Vet Fak Derg, 20 (1): 5-10, 2014. DOI: 10.9775/kvfd.2013.9234
  • 2. Prakash V, Gupta AK, Singh M, Ambhore GS, Singh A, Gandhi RS: Random regression test-day milk yield models as a suitable alternative to the traditional 305-day lactation model for genetic evaluation of Sahiwal cattle. Indian J Anim Sci, 87 (3): 340-344, 2017.
  • 3. Pereira RJ, Bignardi AB, El Faro L, Verneque RS, Vercesi Filho AE, Albuquerque LG: Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle. J Dairy Sci, 96 (1): 565-574, 2013. DOI: 10.3168/jds.2011-5051
  • 4. Schaeffer LR, Jamrozik J, Kistemaker GJ, Van Doormaal J: Experience with a test-day model. J Dairy Sci, 83 (5): 1135-1144, 2000. DOI: 10.3168/jds. S0022-0302(00)74979-4
  • 5. Takma Ç, Akbaş Y: Variance components and genetic parameter estimates using random regression models on test day milk yields of Holstein Friesians. Kafkas Univ Vet Fak Derg, 15 (4): 547-551, 2009. DOI: 10.9775/kvfd.2009.055-A
  • 6. Breda FC, Albuquerque LG, Euclydes RF, Bignardi AB, Baldi F, Torres RA, Barbosa L, Tonhati H: Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference. J Dairy Sci, 93 (2): 784-791, 2010. DOI: 10.3168/jds.2009-2230
  • 7. Jamrozik J, Schaeffer LR: Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation holsteins. J Dairy Sci, 80 (4): 762-770, 1997. DOI: 10.3168/jds.S0022-0302(97)75996-4
  • 8. Henderson CR: Analysis of covariance in the mixed model: higher-level, nonhomogeneous, and random regressions. Biometrics, 38 (3): 623-640, 1982. DOI: 10.2307/2530044
  • 9. Laird NM, Ware JH: Random-effects models for longitudinal data. Biometrics, 38 (4): 963-974, 1982. DOI: 10.2307/2529876
  • 10. Schaeffer L, Dekkers J: Random regressions in animal models for test-day production in dairy cattle. Proceeding of the 5th World Congress of Genetics Applied Livestock Production. 07-12 August, 443-446 Guelph, Canada, 1994.
  • 11. Schaeffer LR: Application of random regression models in animal breeding. Livest Prod Sci, 86 (1-3): 35-45, 2004. DOI: 10.1016/S0301- 6226(03)00151-9
  • 12. Pool MH, Meuwissen THE: Prediction of daily milk yields from a limited number of test days using test day models. J Dairy Sci, 82 (7): 1555-1564, 1999. DOI: 10.3168/jds.S0022-0302(99)75383-X
  • 13. Olori VE, Hill WG, McGuirk BJ, Brotherstone S: Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livest Prod Sci, 61 (1): 53-63, 1999. DOI: 10.1016/S0301-6226(99)00052-4
  • 14. Meyer K: Random regression analyses using B-splines to model growth of Australian Angus cattle. Genet Sel Evol, 37, 473-500, 2005. DOI: 10.1186/1297- 9686-37-6-473
  • 15. Behzadi MRB, Mehrpoor Z: Estimation of genetic parameters of first lactation test-day milk yield using random regression models in Iranian holstein cows. J Anim Plant Sci, 28 (1): 24-32, 2018.
  • 16. Peixoto MGCD, Santos DJA, Borquis RRA, Bruneli FAT, Panetto JCC, Tonhati H: Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials. Pesq Agropec Bras, 49 (5): 372-383, 2014. DOI: 10.1590/S0100-204X2014000500007
  • 17. Prakash V, Gupta AK, Gupta A, Gandhi RS, Singh A, Chakravarty AK: Random regression model with heterogeneous residual variance reduces polynomial order fitted for permanent environmental effect but does not affect genetic parameters for milk production in Sahiwal cattle. Anim Prod Sci, 57 (6): 1022-1030, 2016. DOI: 10.1071/AN15347
  • 18. Galic A, Takma C: Estimates of genetic parameters for body weight in Turkish Holstein bulls using random regression model. J Agric Sci, 25 (3): 328- 333, 2019. DOI: 10.15832/ankutbd.417422
  • 19. Haiduck Padilha A, Costa CN, Braccini Neto J, Daltro DdS, Cobuci JA: Selecting random regression models under different minimum number of test day records. Livest Sci, 199, 69-73, 2017. DOI: 10.1016/j.livsci.2017.03.013
  • 20. Cho CI, Alam M, Choi TJ, Choy YH, Choi JG, Lee SS, Cho KH: Models for estimating genetic parameters of milk production traits using random regression models in Korean Holstein cattle. Asian-Australas J Anim Sci, 29 (5): 607-614, 2016. DOI: 10.5713/ajas.15.0308
  • 21. Pereira RJ, Ayres DR, Santana Junior ML, Faro LE, Vercesi Filho AE, de Albuquerque LG: Test-day or 305-day milk yield for genetic evaluation of Gir cattle. Pesq Agropec Bras, 54:e00325, 2019.
  • 22. Akaike H: Information theory and an extension of the maximum likelihood principle. In, Parzen E, Tanabe K, Kitagawa G (Eds): Selected Papers of Hirotugu Akaikeed. 199-213, Springer, New York, NY, 1998.
  • 23. Schwarz G: Estimating the dimension of a model. Ann Stat, 6 (2): 461- 464, 1978.
  • 24. Takma C, Akbas Y: Comparison of fitting performance of random regression models to test day milk yields in Holstein Friesians. Kafkas Univ Vet Fak Derg, 15 (2): 261-266, 2009. DOI: 10.9775/kvfd.2008.138-A
  • 25. López-Romero P, Carabaño MJ: Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein– Friesian cattle. Livest Prod Sci, 82 (1): 81-96, 2003. DOI: 10.1016/S0301- 6226(03)00003-4
  • 26. Takma C, Akbas Y: Estimates of genetic parameters for test day milk yields of a Holstein Friesian herd in Turkey with random regression models. Arch Tierz, 50 (4): 327-336, 2007.
  • 27. Akbas Y, Takma Ç, Orhan H, Özsoy AN: Şansa Bağlı Regresyon ve Çok Özellikli Modeller ile Denetim Günü Süt Verimlerine ait Kalıtım Derecelerinin Tahminlenmesi. 7. Ulusal Zootekni Bilim Kongresi, 14-16 Eylül, Adana, 2011.
  • 28. Bignardi AB, El Faro L, Cardoso VL, Machado PF, de Albuquerque LG: Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. Livest Sci, 123 (1): 1-7, 2009. DOI: 10.1016/j.livsci.2008.09.021
  • 29. Galiç A, Kumlu S: Türkiye’de yetiştirilen siyah alacaların kontrol günü süt verimlerine ait genetik parametre tahmininde şansa bağlı regresyon modelinin kullanımı. Kafkas Univ Vet Fak Derg, 18 (5): 719-724, 2012. DOI: 10.9775/kvfd.2011.6008
  • 30. Naderi Y: Estimation of genetic parameters for milk yield, somatic cell score, and fertility traits in Iranian Holstein dairy cattle. IIOAB J, 7 (8): 97-104, 2016.
  • 31. Bignardi AB, El Faro L, Torres Júnior RAA, Cardoso VL, Machado PF, Albuquerque LG: Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows. Genet Mol Res, 10 (4): 3565-3575, 2011. DOI: 10.4238/2011.October.31.4
  • 32. Takma C, Akbas Y: Estimation of breeding values with heterogeneous residual variances by random regression models. Kafkas Univ Vet Fak Derg, 22 (1): 37-41, 2016. DOI: 10.9775/kvfd.2015.14364

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.