Mujib A. ABDURAHMAN
(Karadeniz Teknik Üniversitesi, Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, TR-61080, Trabzon, TÜRKİYE)
İlknur TOSUN
(Karadeniz Teknik Üniversitesi, Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, TR-61080, Trabzon, TÜRKİYE)
İnci DURUKAN
(Karadeniz Teknik Üniversitesi, Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, TR-61080, Trabzon, TÜRKİYE)
Mona KHORSHIDTALAB
(Karadeniz Teknik Üniversitesi, Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, TR-61080, Trabzon, TÜRKİYE)
Ali Osman KILIÇ
(Karadeniz Teknik Üniversitesi, Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, TR-61080, Trabzon, TÜRKİYE)
Yıl: 2021Cilt: 27Sayı: 1ISSN: 1300-6045 / 1309-2251Sayfa Aralığı: 29 - 36İngilizce

65 0
Four Temperate Bacteriophages from Methicillin-resistant Staphylococcus aureus Show Broad Bactericidal and Biofilm Removal Activities
The emergence of multi-drug resistance among many bacteria including zoonotic pathogens in the food chain poses a growing public health threat to humans, animals, and the environment worldwide. The inefficiency of current antibiotics to control these pathogens necessitated the development of alternative approaches, such as phage therapy, for the prevention and treatment of human and animal infections, food safety, and wastewater treatment. In this study, four temperate bacteriophages, designated as Trsa205, Trsa207, Trsa220, and Trsa222 were isolated by mitomycin C induction from methicillin-resistant Staphylococcus aureus (MRSA) strains. The phages were characterized based on their electron microscope morphology, burst size, host range, and biofilm removal potential. Based on their morphology, all four phages with isometric heads and long non-contractile tails belong to Siphoviridae family. The one-step growth curves of phages revealed that Trsa205 and Trsa207 have latent periods of about 20 min that results in a burst size of 30 and 45 virions/host cell, respectively, while Trsa220 and Trsa222 showed 25 min of latent period and produced 20 virus particles/cell. The agar-spot assay was used for phage host range determination, and biofilm removal activities were measured spectrophotometrically after crystal violet staining. It was found that at least two-thirds of 56 S. aureus strains (66%) could be lysed by phages when used in combination, and 20-38% by one of the phages. The four phages in combination were able to remove the S. aureus biofilms by 65%. Our results indicated that the newly identified bacteriophages have the potential to be used in phage therapy against multi-drug resistant S. aureus including MRSA and removal of biofilms.
DergiAraştırma MakalesiErişime Açık
  • 1. WHO: Media Centre. News Release. WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/newsroom/ detail/27-02-2017-who-publishes-list-of-bacteria-for-which-newantibiotics- are-urgently-needed; Accessed: 29 May 2020.
  • 2. Otto M: Staphylococcal biofilms. Microbiol Spectr, 6 (4): GPP3-0023- 2018. DOI: 10.1128/microbiolspec.GPP3-0023-2018
  • 3. Zhen X, Lundborg CS, Sun X, Hu X, Dong H: Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob Resist Infect Control, 8:137, 2019. DOI: 10.1186/s13756-019-0590-7
  • 4. Li L, Zhang Z: Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol Biol Rep, 41, 5829-5838, 2014. DOI: 10.1007/ s11033-014-3457-2
  • 5. Rohde C, Wittmann J, Kutter E: Bacteriophages: A therapy concept against multi-drug-resistant bacteria. Surg Infect, 19, 737-744, 2018. DOI: 10.1089/sur.2018.184
  • 6. Elbreki M, Ross RP, Hill C, O’Mahony J, McAuliffe O, Coffey A: Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J Viruses, 2014:382539, 2014. DOI: 10.1155/2014/382539
  • 7. Kortright KE, Chan BK, Koff JL, Turner PE: Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe, 25, 219-232, 2019. DOI: 10.1016/j.chom.2019.01.014
  • 8. Altamirano FLG, Barr JJ: Phage therapy in the postantibiotic era. Clin Microbiol Rev, 32:e00066-18, 2019. DOI: 10.1128/CMR.00066-18
  • 9. Weynberg KD: Viruses in marine ecosystems: From open waters to coral reefs. Adv Virus Res, 101, 1-38, 2018. DOI: 10.1016/bs.aivir.2018.02.001
  • 10. Pratama AA, van Elsas JD: The ‘Neglected’ soil virome - Potential role and impact. Trends Microbiol, 26, 649-662, 2018. DOI: 10.1016/j. tim.2017.12.004
  • 11. Jassim SAA, Limoges RG, El-Cheikh H: Bacteriophage biocontrol in wastewater treatment. World J Microbiol Biotechnol, 32:70, 2016. DOI: 10.1007/s11274-016-2028-1
  • 12. Deghorain M, Van Melderen L: The staphylococci phages family: An overview. Viruses, 4, 3316-3335, 2012. DOI: 10.3390/v4123316
  • 13. Biddappa AC, Sundarrajan S, Ramalinga AB, Sriram B, Padmanabhan S: Staphylococcus bacteriophage tails with bactericidal properties: New findings. Biotechnol Appl Biochem, 59, 495-502, 2012. DOI: 10.1002/bab.1052
  • 14. Gutiérrez D, Martínez B, Rodríguez A, García P: Isolation and characterization of bacteriophages infecting Staphylococcus epidermidis. Curr Microbiol, 61, 601-608, 2010. DOI: 10.1007/s00284-010-9659-5
  • 15. Carey-Smith GV, Billington C, Cornelius AJ, Hudson JA, Heinemann JA: Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol Lett, 258, 182-186, 2006. DOI: 10.1111/j.1574-6968. 2006.00217.x
  • 16. Kiliç AO, Pavlova SI, Ma WG, Tao L: Analysis of Lactobacillus phages and bacteriocins in American dairy products and characterization of a phage isolated from yogurt. Appl Environ Microbiol, 62, 2111-2116, 1996.
  • 17. Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y: Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol, 75, 4483-4490, 2009. DOI: 10.1128/AEM.02641-08
  • 18. Soni KA, Nannapaneni R: Removal of Listeria monocytogenes biofilms with bacteriophage P100. J Food Prot, 73, 1519-1524, 2010. DOI: 10.4315/0362-028X-73.8.1519
  • 19. Van Rijen MML, Van Keulen PH, Kluytmans JA: Increase in a Dutch hospital of methicillin-resistant Staphylococcus aureus related to animal farming. Clin Infect Dis, 46, 261-263, 2008. DOI: 10.1086/524672
  • 20. Peton V, Le Loir Y: Staphylococcus aureus in veterinary medicine. Infect Genet Evol, 21, 602-615, 2014. DOI: 10.1016/j.meegid.2013.08.011
  • 21. Golkar Z, Bagasra O, Pace DG: Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J Infect Dev Ctries, 8, 129-136, 2014. DOI: 10.3855/jidc.3573
  • 22. Love MJ, Bhandari D, Dobson RCJ, Billington C: Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics, 7:17, 2018. DOI: 10.3390/ antibiotics7010017
  • 23. Bradley DE: Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev, 31, 230-314, 1967.
  • 24. Ackermann HW: 5500 Phages examined in the electron microscope. Arch Virol, 152, 227-243, 2007. DOI: 10.1007/s00705-006-0849-1
  • 25. Young R, Wang IN, Roof WD: Phages will out: Strategies of host cell lysis. Trends Microbiol, 8, 120-128, 2000. DOI: 10.1016/s0966- 842x(00)01705-4
  • 26. Gallet R, Kannoly S, Wang IN: Effects of bacteriophage traits on plaque formation. BMC Microbiol, 11:181, 2011. DOI: 10.1186/1471-2180-11-181
  • 27. Choi C, Kuatsjah E, Wu E, Yuan S: The effect of cell size on the burst size of T4 bacteriophage infections of Escherichia coli B23. J Exp Microbiol Immunol, 14, 85-91, 2010.
  • 28. Monteiro R, Pires DP, Costa AR, Azeredo J: Phage therapy: Going temperate? Trends Microbiol, 27, 368-378, 2019. DOI: 10.1016/j. tim.2018.10.00

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.